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A group of glycosphingolipids found in an invertebrate:
Their structures and biological significance
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Abstract: A novel group of glycosphingolipids was identified in the nervous tissue and skin
of the mollusc, Aplysia kurodai, which lacks gangliosides. More than 30 glycolipids were detected
on HPTLC plates and the structures of 9 major glycolipids were determined. They were
pentaosylglycosphingolipids and their common core structure was GalNAc,1!3GalO1!4GlcO1!
1ceramide, except for one glycolipid in which GalO of the core structure was replaced by Gal,.
3-O-MeGalO or 4-O-MeGlcNAc, or 3,4-O-carboxyethylideneGalO was at their non-reducing ends.
Gal, or Fuc, binds to Gal of the core structure at 2C as a side chain sugar. One to three 2-
aminoethylphosphonic acids and/or phosphoethanolamine link to the glycolipids. Immunohisto-
chemically, glycolipids having carboxyethylideneGal at their non-reducing ends were localized
exclusively in nerve bundles. Glycolipids activated cAMP-dependent protein kinase in the rat brain
and may directly activate cAMP-dependent protein kinase in a manner similar, but not identical, to
that of cAMP. The biological functions of glycolipids may share neurobiological functions proposed
for gangliosides in vertebrates.
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1. Introduction

In 1966, we reported our first method for the
isolation of many neuronal cell bodies from the rat
brain.1) This method, and that by Rose,2) prevailed
widely. However, electron-microscopically, cell bodies
were not well preserved for the analysis of neuronal
cell membranes. Therefore, we invented a second
method in which Ficoll solution was used in place of
an acetone-glycerol mixture as the isolation medium

and a pig brain stem was used in place of a rat brain
as the source of neuronal cell bodies,3) and by using
standard routine biochemical methods, we could
identify many biochemical characteristics of the
neuron.4) The content of gangliosides was similar to
or higher than that of other reports in which neuronal
cell bodies were isolated in bulk, but lower than that
of the grey matter of the pig cerebral cortex5) and
hand-dissected neuronal cell bodies isolated from
Deiter’s vestibular nucleus of the ox.6) Electron-
microscopically, the preservation of neuronal cell
membranes isolated by our second method varied
from experiment to experiment, and we could not
improve on the method to constantly preserve
neuronal cell membranes.

Gangliosides have long been considered to be
enriched in membranes of the neuron and are
indispensable for neuronal functions.7),8) In this
context, we began to analyze, neurophysiologically
well documented nerve tissues as a whole without
isolating neuronal elements from these tissues. We
analyzed the ganglia and nerve fibers of the sea
hare, Aplysia kurodai, and giant nerve fibers of the
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crayfish, Cambarus clarki. Gangliosides were not
detected, but several water-soluble phosphorus
–containing lipids were identified in these nerve
tissues.9),10)

2. Structures of water-soluble phosphorus-
containing lipids from the tissues

of Aplysia kurodai

Water-soluble phosphorus-containing lipids
were extracted with a chloroform-methanol-water
mixture from fresh or frozen ganglia, nerve fibers,
and acetone-powder of the skin of Aplysia kurodai
caught at Sado Island, separated by phase separa-
tion, and then purified by Sephadex column chro-
matography. Two-dimensional chromatograms of
water-soluble lipid fractions from these three tissues
are shown in Fig. 1. Most of the glycolipids detected
by anthrone reagent were also stained with fluoresc-
amine reagent for amines, and stained rather weakly
with Dittmer-Lester’s reagent for phosphorus.11)

The two-dimensional thin-layer chromatographic
patterns of the three tissues were very reproducible
and we assumed that three main spots of the skin,
SGL-II, SGL-I, and SGL-I’ (Fig. 1A), may be the
same glycolipids as the three glycolipids of ganglia,
GGL-V, GGL-IV, and G-14 (Fig. 1B), and three
glycolipids of nerve fibers, FGL-VII, F-16, and F-19
(Fig. 1C), respectively. The G-18 and G-13 glyco-
lipids of ganglia may be the same as F-21 and FGL-V
of nerve fibers, respectively. Glycolipids FGL-IIa,
FGL-IIb, F-9, and FGL-I appeared to be specifi-
cally concentrated in nerve fibers. Immunochemical
studies12)–14) support our assumption. In this context,
we determined the structures of nine glycolipids,
SGL-II, SGL-I, and SGL-I’ of the skin and F-9, F-21,
FGL-I, FGL-IIa, FGL-IIb, and FGL-V of the nerve
fibers of Aplysia.

Glycolipids were isolated and purified as de-
scribed previously.14)–22) In short, acetone powder of
the skin or fresh nerve fibers of Aplysia was extracted
with chloroform-methanol-water (30:60:10, v/v) and
purified by two consequential silica gel columns
monitoring their purities on HPTLC plates. Their
structures were determined by sugar analysis, amino
acid analysis, permethylation studies, fast atom
bombardment-mass spectrometry, and proton mag-
netic resonance spectroscopy.

The chemical structures of the nine sphingogly-
colipids are shown in Fig. 2. As described above,
three of them, SGL-II, SGL-I, and SGL-I’, isolated
from the skin may also exist in ganglia and nerve
fibers (Fig. 2a). Two glycolipids, F-21 and FGL-V,
isolated from nerve fibers also may exist in ganglia
(Fig. 2b). Four pyruvylated glycolipids, F-9, FGL-
IIa, FGL-IIb, and FGL-I, seem to be unique to nerve
fibers (Fig. 2c).

The structural characteristics of the nine sphin-
goglycolipids are summarized as follows. ① They are
pentaosylglycosphingolipids. ② The common core
structure of these glycosphingolipids is GalNAc,1!
3GalO1!4GlcO1!1ceramide, except for F-21 in
which GalO of the core structure is replaced by
Gal,. ③ As a non-reducing terminal sugar, 3-O-
MeGalO, 4-O-MeGlcNAc,, or 3,4-O-(S-1-carboxy-
ethylidene)Gal attaches to the core structure. Five
glycosphingolipids having pyruvylated Gal as their
terminal sugar may be fairly acidic.④ As a side chain
sugar, ,-Fuc or ,-Gal links to C2 of Gal of the core
structure. ⑤ Glycosphingolipids contain phosphorus
and amine as 2-aminoethylphosphonic acid or phos-
phoethanolamine and are zwitterionic. One to three
moles of 2-aminoethylphosphonic acid (2-AEP) and/
or one mole of phosphoethanolamine link to the
glycosphingolipids. 2-AEP is characterized by a C-P

Fig. 1. Two dimensional HPTLC of water-soluble lipid fractions from the skin (A), ganglia (B), and nerve fibers (C) of Aplysia kurodai.
Lipids were located with anthrone reagent.
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bond. ⑥ 2-AEP links to the side chain of Gal and/or
directly to Gal, Glc, or GalNAc of the core structure
at C6 of those sugars. Phosphoethanolamine links
to C6 of Gal of the core structure. ⑦ As for the
aliphatic portion of glycosphingolipids, the major
fatty acid is palmitic acid, except for SGL-II and
F-21, which have stearic acid as the second major
fatty acid. Two major sphingosine bases of the
glycolipids are octadeca-4-sphingenine and anteiso-
nonadecasphingenine.

It is interesting that F-21, which exists in the
nervous system at high concentrations, is supposed to
have a specific conformation formed by intramolec-
ular interactions in sugar moieties. Two or three of
the 2-AEP groups may serve as a chelating site for
cations or anions.20)

3. Immunochemical characteristics of
glycosphingolipids and their distribution
in the nervous tissues of Aplysia kurodai

Antisera were raised in rabbits using three
glycolipids, SGL-II, SGL-I, and FGL-IIb, those
having differently modified sugars, 3-O-MeGal, 4-O-
MeGlcNAc or 3,4-O-(S-1-carboxyethylidene)Gal, at
their non-reducing ends. The specificities of these
antisera were certified on thin-layer chromato-
grams.12)-14) For immunohistochemical studies,
freshly dissected abdominal ganglia and nerve fibers
of Aplysia kurodai were stained by the indirect
immunoperoxidase method.12),13)

The antiserum against SGL-II stained glycolipids
with 3-O-MeGal at their non-reducing ends on

Fig. 2. Structures of 9 glycosphingolipids isolated from the mollusc, Aplysia kurodai. a) These three glycolipids seem to be present in the
skin, ganglia, and nerve fibers. b) These two glycolipids seem to be present in ganglia and nerve fibers. c) These four glycolipids seem
to be present exclusively in nerve fibers.
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HPTLC plates (Fig. 3) and several bands of pro-
teins on nitrocellulose sheets. The antiserum stained
neuropil, neuronal cell bodies, and periganglionic
tissues. Pretreatment of tissue sections with chloro-

form-methanol abolished the staining of neuropil
and neuronal cell bodies indicating that the staining
of neuronal elements was given by antigenic glyco-
lipids.12)

Fig. 3. Diagrammatic representation of radioimmuno-thin-layer chromatograms of total glycolipids isolated from the skin (A), ganglia
(B), and nerve fibers (C) of Aplysia kurodai. Plain circles indicate glycolipids that reacted to the antiSGL-II antiserum, dotted circles
indicate glycolipids reactive to the antiSGL-I antiserum, and dark circles indicate glycolipids that reacted to the antiFGL-IIb
antiserum.

Fig. 4. Immunostaining with anti-FGL-IIb antiserum of cryostat sections of the abdominal ganglion of Aplysia kurodai. A: Horizontal
section of the abdominal ganglion, nerve bundles (arrows) were stained. Neuron (arrowheads), neuropil (NP), commissure (C) and
periganglionic tissue (PT) were scarcely stained, #23. B: Horizontal section stained with the antiserum after chloroform-methanol
(2:1, v/v) pretreatment. NB: nerve bundles, P: parenchyma, #23. C: Horizontal section of the proximal portion of peripheral and
connective nerves of the abdominal ganglion. Arrow: nerve bundles, PS: perineural sheath, #230. D: Cross section of the proximal
portion of peripheral and connective nerves that extended from the abdominal ganglion. Arrow: nerve bundles, PS: perineural sheath,
#230.
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Anti SGL-I antiserum reacted with several
glycolipids isolated from the skin, ganglia, and nerve
fibers on HPTLC (Fig. 3), and immunostained
neuropil in ganglia (unpublished data).

Anti FGL-IIb antiserum stained all glycolipids
with pyruvylated Gal at their non-reducing ends on
HPTLC (Fig. 3) and distinctly immunostained the
nerve bundles of Aplysia, and staining was abolished
by pretreatment of tissue sections with chloroform-
methanol (Fig. 4).13)

4. Glycosphingolipids activate cAMP-kinase23)

To determine the functional significance of
glycolipids, we tested the effects of glycolipids on
the activation of cAMP-kinase partially purified from
the membrane fraction of the rat brain.

Various glycolipids such as SGL-II, HF-SGL-II,
SGL-I, SGL-I’, FGL-V, and F-21 could activate
cAMP-kinase (Table 1). Among the glycolipids
examined, SGL-II was the most potent, giving half-
maximal activation at 32.2 µM. Activation of cAMP-
kinase was maximal with 250 µM SGL-II using
kemptide as a substrate. The effect of SGL-II was
additive on kinase activity at submaximal concen-
trations of cAMP. Kinase activity activated with
SGL-II was inhibited by the addition of protein
kinase inhibitor peptide, a specific peptide inhibitor
for cAMP-kinase. Its inhibitory pattern was similar
to that for the catalytic subunits. Of the various
substrates tested, glycolipid-stimulated cAMP-kinase
could phosphorylate MAP2, synapsin I, and MBP,
but not histone H1 or casein. The regulatory subunit
strongly inhibited the activity of the purified
catalytic subunit of cAMP-kinase. This inhibition
was reversed by the addition of SGL-II, similar to
cAMP. SGL-II was capable of partially dissociating

cAMP-kinase, as observed with gel filtration column
chromatography. However, the binding activity of
cAMP to the holoenzyme was not inhibited with
SGL-II. These results demonstrate that glycolipids
can directly activate cAMP-kinase in a manner
similar, but not identical, to that of cAMP.

PKC and Ca2D/calmodulin-dependent protein
kinase were not activated with glycolipids, indicating
that the activation of cAMP-kinase by glycolipids
was fairly specific.

5. Discussion

The impetus for the present research on glyco-
sphingolipids in a mollusc, Aplysia kurodai, was our
unexpected finding that neuronal cell bodies bulkily
isolated from pig brain stems contained lower
amounts of gangliosides per protein than that of
the cerebral cortex of the pig brain.5) Gangliosides,
which have been assumed to be indispensable for
neuronal functioning in vertebrates, were not de-
tected in the nervous tissues of Aplysia, but more
than thirty spots were detected by thin-layer
chromatography of the water-soluble glycolipid
fraction of tissues of Aplysia.11) In this context, we
will discuss the structures, tissue distributions, and
biological functions of newly found glycolipids in
comparison with those of gangliosides that have been
thoroughly studied by many investigators.

Chemical structures. Nine glycosphingolipids,
which are supposed to be present in the nerve tissues
of Aplysia, are pentaosylglycosphingolipids having
one to three moles of 2-aminoethylphosphonic acid
and/or one mole of phosphoethanolamine bound
to sugars. Their common core structure, Gal(O or
,)1!3GalNAc,1!3GalO1!4GlcO1!1ceramide, is
very similar to the core structure of GM1, GalO1!
3GalNAcO1!4GalO1!4GlcO1!1ceramide, which is
abundant in the mammalian brain. The glycosphin-
golipids of Aplysia can be divided into three groups
by their modified sugars, 3-O-MeGal, 4-O-MeGlc-
NAc, and 3,4-O-(S-1-carboxyethylidene)Gal, at their
non-reducing ends. 2-Aminoethylphosphonic acid
is characterized by its C-P bond and its natural
occurrence was reported by Horiguchi and Kandatsu
for the first time.24) The glycosphingolipids of Aplysia
may be acidic owing to the bound 2-aminoethyl-
phosphonic acid or phosphoethanolamine. Five
sphingoglycolipids have pyruvic acid and their acid-
ity may be comparable to monosialo- or disialogan-
gliosides.

Recently, the structures of two major glyco-
sphingolipids isolated from the eggs of Aplysia were

Table 1. Effect of various glycolipids on cAMP-kinase activity

Effector Kinase activity (pmol/min)

None 2.5 ’ 0.2

SGL-II 63.0 ’ 2.0

HF-SGL-II 59.0 ’ 2.6

SGL-I 62.3 ’ 1.0

SGL-I’ 55.7 ’ 3.0

FGL-V 49.1 ’ 1.1

F-21 43.7 ’ 1.8

Glucocerebroside 2.6 ’ 0.1

cAMP 111.6 ’ 3.7

Kinase activity was assayed in the presence of the indicated
glycolipids at 100µM using 40 µM kemptide as a substrate.
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determined, with one being tetraosyl- and the other
octaosylglycosphingolipid. Both glycolipids have
three moles of aminoethylphosphonic acid and share
the structure [6’-O-(2-AEP)Gal,1!2] (2–AEP!6)-
GalO1!4(2–AEP!6)GlcO1!1ceramide with SGL-
I.25),26)

Tissue and cellular distribution of glyco-
sphingolipids in nerve tissues of Aplysia. Anti-
sera against SGL-II and SGL-I, which are specific to
3-O-MeGal and 4-O-MeGlcNAc, respectively, stained
neuropil of ganglia. Furthermore, anti SGL-II anti-
serum stained perineural tissues. Antiserum against
FGL-IIb, which is specific to pyruvic acid bound to
galactose at the non-reducing end of glycolipids, only
stained nerve bundles distinctly. Sherbany et al.
reported that several kinds of phosphonoglycolipids
were synthesized in R2 neuronal cell bodies and were
transported to the periphery in the axons of Aplysia
californica.27) Though SGL-II sent by us as a
reference to them was not identified, their glycolipid
fraction may contain pyruvic acid-containing glyco-
sphingolipids isolated from Aplysia kurodai.

Neurobiological significance of glycosphingo-
lipids isolated from Aplysia. Accumulating
evidence suggests that membrane protein functions
are regulated by surrounding lipids in the lipid
bilayer. Previous studies have reported that the
activities of several protein kinases, including
PKC,28) Ca2D/calmodulin-dependent protein kinase
II,29) epidermal growth factor receptor kinase,30),31)

and ganglioside-dependent protein kinases32)–34) were
modified by glycolipids. Yates et al,35) Chan,33) and
we36) reported that the activity of the catalytic
subunit of cAMP-kinase was inhibited by ganglio-
sides. On the other hand, we found that the
glycolipids could stimulate the activity of the
holoenzyme and did not affect the activity of the
catalytic subunit. These differences should be due to
differences in chemical and stereochemical structures
between SGL-II and GM1. The glycolipids used in
our study were a series of compounds containing 2-
aminoethylphosphonate isolated from the skin, gan-
glia, and nerve fibers of the marine mollusc, Aplysia
kurodai, and did not contain sialic acids. Compounds
consisted of a common oligosaccharide backbone
(GalNAc,1!3GalO1!4Glc). This structure is spe-
cific for this series of glycolipids in the animal
kingdom. As for the ceramide moiety, most fatty
acids were palmitate and about half of the bases were
anteisononadeca-4-sphingenine in the glycolipids.
Thus, the glycolipids used were dissimilar to ganglio-
sides in their lipophilic moieties.

Though most glycolipids are bound to the
membrane surface of cells, 295% of total cellular
glycolipids are soluble in the cytosol,37)–39) and occur
as micelles in aqueous solution at the concentrations
used in the present study. Therefore, glycolipids can
reach specific intracellular components at physiolog-
ically significant levels. The content of SGL-II was
3mg/g of dry weight in consideration of the yield. As
dry weight accounts for 910% of wet weight tissue,
the concentration of SGL-II in the total tissues of
Aplysia may correspond to 9180 µM in the tissues of
Aplysia. This concentration of glycolipids is enough
to activate cAMP-kinase, as shown in the present
study. However, further study is still required to
understand the molecular mechanism how these
glycolipids activate soluble enzymes in the cytosol.

Aplysia’s nervous system has been used success-
fully to elucidate the cellular and molecular processes
underlying long-term potentiation of synaptic con-
ductance. Cyclic AMP-kinase was supposed to be
involved in these processes.40) Catalytic and regu-
latory subunits of cAMP-kinase and their cDNA were
identified in the neurons of Aplysia.41) Furthermore,
synthesis of phosphonosphingoglycolipids in neuronal
cell bodies and their axonal transport were reported
in Aplysia, as previously described.27)

We suppose that in Aplysia glycolipids may be
involved in the long-term potentiation of synaptic
conductance through activation of cAMP-kinase.

It was reported that exogenous glycolipids
induced differentiation of several types of neural
cells with concomitant sprouting and extension of
neurites.42) In fact, we found that NG108-15 cells
increased the extension of neurites in the presence
of SGL-II (unpublished data). Glycolipids may be
involved in many neural functions via the activation
of cAMP-kinase.

Many sphingoglycolipids, other than those
reported in this study, have been identified in
protostomia.43) Some of them, or yet unveiled
glycolipids, may share biologically or neurobiologi-
cally important functions proposed for gangliosides in
vertebrates.

6. Conclusion

Gangliosides have never been identified in the
phylum of protostomia, though the presence of
polysialic acid was shown in the embryos of
Drosophila.44) Glycosphingolipids identified in the
nerve tissues of Aplysia, especially pyruvylated acidic
glycosphingolipids, may share neurobiological func-
tions proposed for gangliosides in vertebrates.
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