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Abstract: Self-incompatibility (SI) is defined as the inability to produce zygotes after self-
pollination in a fertile hermaphrodite plant, which has stamens and pistils in the same flower. This
structural organization of the hermaphrodite flower increases the risk of self-pollination, leading to
low genetic diversity. To avoid this problem plants have established several pollination systems,
among which the most elegant system is surely SI. The SI trait can be observed in Brassica crops,
including cabbage, broccoli, turnip and radish. To produce hybrid seed of these crops efficiently, the
SI trait has been employed in an agricultural context. From another point of view, the recognition
reaction of SI during pollen-stigma interaction is an excellent model system for cell-cell
communication and signal transduction in higher plants. In this review, we describe the molecular
mechanisms of SI in Brassicaceae, which have been dissected by genetic, physiological, and
biological approaches, and we discuss the future prospects in relation to associated scientific fields
and new technologies.
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1. Introduction

In most species of plants the flowers are
hermaphrodite that is both stamen and pistil are
present in the same flower. Self-pollination occurs
easily in hermaphrodite flowers, and leads to inbreed-
ing depression and decreased genetic variation; there-
fore plants have evolved several mechanisms to avoid
self-pollination. Self-incompatibility (SI) is defined as
“the inability of a fertile hermaphrodite seed plant
to produce zygotes after self-pollination”, which is
surely the most elegant pollination system.1) This
trait attracted the attention of Charles Darwin, who

published detailed descriptions of pollination and the
form of flowers during his studies of evolution.2),3) In
the past, the SI phenotype was mostly evaluated by
seed formation after open pollination (artificial self-
pollination and cross-pollination). However, from
the evaluation of seed formation, the phenotype of
“incompatibility” and “sterility” cannot be distin-
guished. However, in relation to biological events,
“incompatibility” and “sterility” are clearly different.
“Sterility” is caused by non-functional male and/or
female components, whereas in “incompatibility”
there is a lack of seed formation in a specific male
and female combination, both of which are functional.
Because the final phenotypes in “incompatibility” and
“sterility” are quite similar, this phenomenon was
originally termed “self-sterility”. Taking the initial
letter of “sterility”, the genetic locus regulating SI
was termed the “S locus”, which is still used as the
authorized locus name.

SI is classified morphologically into heteromor-
phic SI and homomorphic SI. Heteromorphic SI is
related to different flower shapes; for example, pin
(long pistil and short stamen length) and thrum
(short pistil and long stamen length) forms are
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present in primrose (Primula species), buckwheat
(Fagophyrum species) and star fruit (Averrhoa
species). Cross pollination between different flower
types is compatible and is regulated by a single locus
with two alleles, S and s (Fig. 1). The genotype of pin
is ss homozygote, and that of thrum is Ss hetero-
zygote. Thus, on cross-pollination, a frequency of
50% each of pin and thrum should be maintained in
a wild population under SI regulation. Interestingly,
this S gene controls both the incompatibility
phenotype and the flower shape (that is length of
pistil and stamens). Although several attempts have
been made to dissect genes residing at the S locus in
plants with heteromorphic SI, no S genes or their
products have been identified to date.1)

On the other hand, homomorphic SI species
have a single flower shape and are classified by the
inheritance pattern of the S gene into gametophytic
SI and sporophytic SI.1),4) Both SI phenomena are
controlled by a single locus, with multiple S alleles
(S1, S2, S3, + Sn) in most of the plant species. As
described in Fig. 2, the incompatible phenotype is
apparent in self-pollination and in cross-pollination
between pollen and stigma of two different plants
carrying the same S allele. To represent alleles,
superscripts are commonly used in general genetic
research; however, traditionally, S alleles are denoted
by subscripts. In most of our papers and review

articles, we have used superscript allele symbols,
according to the general genetic convention.4)–8)

Therefore, in this article, we have again used super-
scripts for allelic gene representation.

In gametophytic SI (GSI), the S phenotype of
pollen is determined by its own haploid S gene.
The self-pollen inhibition occurs during pollen tube
elongation in the style of the pistil in most GSI.
Plant species in families Fabaceae, Onagraceae,
Poaceae, Rosaceae, Plantaginaceae and Solanaceae
exhibit GSI (Fig. 3A). On the other hand, in
sporophytic SI (SSI), the S phenotype of pollen is
determined by its parental diploid S gene interaction,
so that dominance relationships occur between S
alleles (Fig. 3B).9),10) The landmark genetic SSI
model, established by Bateman from a series of
experiments, is an excellent explanation of S gene
behavior, and is still valid today.11)–13) The molecular
mechanisms of S allele dominance relationships
will be described below. In most SSI plant species,
from families Asteraceae, Brassicaceae and Convol-
vulaceae, pollen tube inhibition occurs on the stigma
surface (Fig. 4).

SI is interesting in two respects: firstly, SI
involves cell-cell communication between pollen/
pollen tube and pistil, and signal transduction in

Fig. 1. Photograph (A) and schematic model (B) of heteromor-
phic SI in primrose. (A) The pin (long pistil and short stamen
length) form is shown on the left, and thrum (short pistil and
long stamen length) is on the right. (B) Selfed pollen and pollen
derived from the same flower form are incompatible. Crossed
pollen and pollen derived from the different flower form are
compatible.

Fig. 2. Schematic model of the S locus. The S locus contains at
least two genes, one encoding the male S determinant, which is
expressed in anther tapetum surrounding the pollen grains
during development, and the other encoding the female S
determinant, which is expressed in the pistil (stigma). Both the
genes encoding male and female S determinants are inherited as
one segregating unit. The number of S alleles is thought to be
over 50 to 100 in Brassica species.167)–169) When both male and
female S determinants are derived from the same S alleles, the
incompatible response occurs. In contrast, in the case of a
combination of different S alleles from the male and female
parents, the compatible response is observed.
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the stigma/style; and, secondly, SI is an important
trait for F1 hybrid seed production in Brassica rapa
(syn. campestris, e.g. Chinese cabbage and turnip),
and B. oleracea (e.g. cabbage, cauliflower, broccoli,
kohlrabi, kale and Brussels sprouts), which was
established in a Japanese seed company before the
2nd World War.6) In other words, we are interested
in Brassica SI from the viewpoint of both funda-
mental biology and agricultural applications. Thus,
an understand of the molecular mechanisms of SI in
Brassica species is an important research target. In
this review article, we will summarize SI research in
Brassicaceae species, including molecular cloning of
the male and female S determinants, epigenetic

regulation of dominance relationships between S
alleles, and evolution of the SI system. Finally, we
will discuss the future prospect for SI research. Many
review articles have been published, and are helpful
in understanding this field.1),4)–8),14),15)

2. Identification of the S-locus-specific
proteins from stigma

In the early SI research, Oenothera (Onagra-
ceae), Malus, Prunus (Rosaceae), Nicotiana, Sola-
num, Petunia (Solanaceae), Trifolium (Legumi-
nosae), Secale, Pahalaris, Fastuca (Poaceae),
Cardamine, Iberis, Brassica (Brassicaceae), Crepis,
Cosmos (Asteraceae), Theobroma (Sterculiaceae),
Ipomoea (Convolvulaceae) and Antirrhinum (Plan-
taginaceae), among others, were studied.1) These
species were well suited to the establishment of
genetic models of SI systems, as described above.
However, for the next step, that is identification of S
gene products at the protein level, only Brassica
and Nicotiana species were used during the 1970s,
because the protein products derived from their
female S genes are highly expressed in stigma/style
tissues. Thus, the SI researchers who selected these
species for study had a great advantage for molecular
dissection of the S-locus.1)

In the case of the Brassica species, immunolog-
ical cross-reactivity and isoelectric focusing (IEF)
were applied to identify the allelic diversity of the S
gene products.16),17) These two methodologies had
advantages for the identification of genetic diversity
of multi-allelic gene products. For example, in the
case of IEF, the molecular masses of allelic gene

Fig. 3. Relationships between phenotype and genotype in GSI
(A) and SSI (B). The pistil (stigma) phenotype presented here is
S1S3 codominance, to clearly demonstrate the difference between
the GSI and SSI. In both types of SI, pollen is rejected when the
SI phenotype of pollen is identical to that of the pistil (stigma).
(A) In the case of GSI, the pollen phenotype is identical to the
genotype. The pistil phenotype of the GSI is always expressed in
codominance. (B) In the case of SSI, the pollen phenotype is
determined by interaction of the parental genotype; therefore,
there is a dominance relationship at the pollen side. If S1 is
dominant over S2, all pollen grains produced from the S1S2 pollen
parent show S1 phenotype, and are rejected on the S1S3 (S1 F S3)
stigma. In contrast, on the same stigma (S1 F S3), if S3 is
recessive to S4 at the pollen side, all pollen grains, which show S4

phenotype, germinate and pollen tube penetration is observed.

Fig. 4. Micrographs showing (A) the inhibition of self-pollen and
the inability of the emerging pollen tubes to invade the papilla
cell wall (incompatibility), and (B) the penetration of cross-
pollen tubes into the papilla cells (compatibility) in Brassica
rapa L. Yellow arrow indicates the penetrated pollen tubes.
With aniline blue staining, pollen tubes appear as distinct tubes
with prominent dots, because callose plugs in the pollen tubes
fluoresce brightly. In contrast, vascular bundles and other tissues
do not fluoresce brightly, as shown in (A). Bar F 200µm.
(Courtesy of Masaaki Osaka and Ken-ichiro Hiroi, unpublished
data).
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products are similar. However, they differ in the
isoelectric point (pI) because the amino acid compo-
sition of their products must be different as a
consequence of the allelic diversity and tertiary
structure of the proteins. Because the S-locus-specific
protein was found to react with concanavalin A (Con
A), which is plant lectin,18) it was concluded that this
protein has a carbohydrate moiety, and it was named
S-locus glycoprotein (SLG).1)

In the 1980s, SLG proteins were extracted and
purified from plant material. Furthermore, the cDNA
clones encoding SLG genes were obtained from
Brassica rapa (syn. campestris) and B. oleracea.19),20)

At this time, the SLG was proposed to be the female
S gene based on several characteristics, as described
below. Firstly, the glycoprotein is directed to be
secreted into the cell wall by a hydrophobic signal
peptide.19)–21) Secondly, twelve cysteine residues were
found to be completely conserved in the C-terminal
region and variable regions were found in the central
and C-terminal regions, from comparisons of over 30
SLGs derived from different S alleles (Fig. 5). When
the nucleotide sequences of allelic SLGs were aligned,
three highly divergent regions were identified and
other regions were found to be highly conserved
among S alleles.5) These variable regions were
proposed to contribute to S allelic specificity,
and could interact with the male S determinant.
Thirdly, the glycosyl residues were similar among S
alleles, indicating that the S allelic specificity is due
to variable regions of SLG itself.1),20) Fourthly,
identification of the S allele by PCR methods using
primers positioned in the conserved regions has
contributed to the breeding of Brassica F1 hybrid
varieties.10),22),23) However, this method sometimes
resulted in the false amplification of the many other
SLG-like genes in the Brassicaceae genome.24)–27) To
exclude non-S-locus SLG-like sequences, linkage to
the S locus had to be confirmed by test pollinations
using a Brassica breeding system.5)

Furthermore, in the 1980s, to construct cDNA
libraries and determine the amino acid sequence of
SLG, tens to hundreds of thousands of stigmas, the
top part of the pistil, were necessary, because SLG
expression is spatiotemporally controlled in mature
stigma papilla cells.21),28) Thus, this identification of
SLG residing at the S locus gave a great advantage to
Brassica SI researchers in the further molecular
dissection of the S locus, and subsequently, during
the 1990s, in determining the sets of male and female
SI genes, as described below. However, at that time,
comparisons of SLG to sequences in public databases

did not provide any evidence as to the function of
SLG in SI recognition.5)

3. Identification and characterization
of female S determinants

Following SLG identification, molecular dissec-
tion of the S locus was advanced by several important
findings. One of the most important milestones was
the discovery of ZmPK1, encoding receptor-like
protein kinase of maize, whose receptor domain has
homology to SLG.29) After this finding, several allelic
SRK genes, encoding S-locus receptor-like kinases,
located at the S locus, were isolated and character-
ized from B. rapa, B. oleracea and B. napus. SRK
contains three functional domains: an extracellular S
domain (receptor domain), a transmembrane do-
main, and an internal serine/threonine protein kinase
domain (Fig. 5).28),30)–32) Interestingly, sequence sim-
ilarity at the amino acid level of SLG and the S
domain of SRK within S alleles is over 80%,5)

indicating that these two regions arose by duplication
within the S locus.28),33)

Thus, at that time, two stigma-specific genes,
SLG and SRK, were known to be present at the S
locus. However, it was difficult to determine the
physical distance between the SLG and SRK genes
precisely. In the case of B. oleracea, the size of the S
locus was estimated to be 350 kb by PFGE analysis
in the early 1990s,34) although this depended on the
location of recognition sites of restriction enzymes
around the S locus. An S-locus region as large as 350
kb suggested that cloning and sequencing of the S-
locus might be quite difficult. However, this was
overcome by the second important breakthrough, the
successful cloning of the 76-kb genomic fragment
containing both SLG and SRK genes in the S9 allele
of B. rapa by use of the PAC vector.35) Based on this
success, molecular dissection of the whole S locus
was possible at the nucleotide sequence level. B. rapa
had an advantage over B. oleracea for molecular
dissection of the S-locus region because the size of
the S locus of B. rapa was smaller than that of
B. oleracea.36) Thus, the physical genomic structure
of the S-locus region was determined in B. rapa, and
also in B. napus (Fig. 6).37)–40) Interestingly, in the
case of B. napus, the S-locus region was found
to have originated from the introgressed B. rapa
genome and not from B. oleracea.31),37)

Next, it was important to determine whether
SLG and/or SRK are necessary for SI recognition at
the stigma side, and for this several gene trans-
formation studies were performed in the 1990s. Loss-
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of-function experiments showed that SLG and/or
SRK are important for the SI recognition reac-
tion.5),6),41)–43) In most cases, following introduction
of SLG or SRK a change to the self-compatibility
(SC) phenotype was observed, which might have
been induced by co-suppression as shown by the
change in petunia flower color.6),44) In order to
overcome co-suppression between endogenous and
exogenous SLG and/or SRK genes, Takasaki and co-
workers used lower-homology SLG/SRK genes from
the two groups of S alleles, class I and class II.45) As
described below, S alleles (S haplotypes) of class I
(e.g. S28) are dominant over those of class II (e.g. S60)
at the pollen side.10),32) Takasaki and co-workers
introduced SLG28 and SRK28 into recipient plant
lines, S60 homozygote or S28S60 heterozygote of
B. rapa. As a result, the transgenic plants harboring
SLG28 did not show a change in S phenotype at the
stigma side, while the transgenic plants harboring
SRK28 showed the S allele specificity at the stigma

side, but not in pollen. Interestingly, transgenic
plants harboring both SLG28 and SRK28 showed the
rigid SI phenotype comparable to non-transgenic
S28S60 heterozygotes, indicating that SRK is the
female S determinant and SLG is required for
full manifestation of the SI response (Fig. 7).45)

This additional effect of SLG was not observed in
B. napus;46) the difference in SLG effect may be a
consequence of the genome organization of the diploid
(B. rapa) and amphidiploid (B. napus) species.

Fig. 6. Physical map of the S locus of the S9 line of B. rapa, showing the location of 14 genes, a transposon-like sequence and three open
reading frames (ORFs). Filled boxes indicate locations of the 14 genes, and horizontal arrows above the genes indicate directions of
their transcription. Three long ORFs (a, b and c) and a transposon-like sequence are represented by open boxes labeled “a,” “b,” “c” and
“Transposon.” Three genes represented by orange-colored boxed are specifically expressed in stigma tissues. Two genes represented by
purple-colored boxes are specifically expressed in anther tissues. The other nine genes represented by green-boxes are expressed in
both vegetative and reproductive tissues.

Fig. 7. Test pollinations for evaluation of SLG and SRK trans-
genic plants by seed formation. Line S60 was used as the recipient
of the transgene and line S28S60 was used as the pollen tester. In
this case, the S phenotype of all pollen was S28 because S28 is
dominant over S60. The phenotype of transformants carrying
SLG28 was coincident to that of the non-transformant recipient
plant, that is S60. In contrast, the seed formation of trans-
formants having SRK28 decreased compared to that of trans-
formants having SLG28 and recipient S60 line. After genetic
crossing of the two transformants, which carried SLG28 and
SRK28 transgenes, the F1 plant showed a rigid SI phenotype,
like the S60S28 heterozygote. SI phenotype was assessed by the
number of seeds formed per pod.

Fig. 5. Schematic structure of SLG and SRK. SLG is an S allele-
specific secreted glycoprotein, having a hydrophobic signal
peptide in the N-terminus and 12 cysteine residues at the C-
terminus. SRK is a receptor protein kinase, whose extracellular
domain (receptor domain) is similar to SLG. SRK consists of a
signal peptide, an SLG-like domain (S-domain), a hydrophobic
transmembrane domain and a cytoplasmic catalytic domain
(kinase domain) of the serine/threonine protein kinase type.
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4. Identification and characterization
of male S determinants

In the course of investigating the identification
of the male S determinant, several S-linked genes
were found to be unrelated to the male S deter-
minant.47)–50) However, another detailed approach,
analysis of pollen coat proteins (PCPs), successfully
lead to identification of the male S determinant.
In Brassica species, PCPs, which are derived from
anther tapetum, are essential for pollen develop-
ment.51) Initially, SLG-interactive PCPs were
searched,52) and these interactive molecules were
then characterized as cysteine-rich small pro-
teins.53)–57) In the course of these experiments, a
bioassay system showed that a <10 kDa PCP is the
male S determinant.58) Interestingly, a gene encoding
a PCP-like protein, SP11, was found to be located at
the S locus, near SRK in B. rapa; thus SP11 was the
most likely candidate for the male S determinant
(Fig. 6).38) Subsequently, it was demonstrated that
SP11 is the male S determinant by using bioassay
and transgenic experiments in B. rapa.59),60) Around
the same time, a gene termed SCR (S-locus cysteine-
rich protein) in B. oleracea was also cloned, and
identified as the male S determinant.61) Because
SP11 and SCR are identical,38),59),61) SP11 will be
used as the name of the male S determinant in this
review article, in both Brassica and Arabidopsis
species.

After identification of SLG, SRK and SP11
genes, many allelic genes were isolated,5),6) which
made it possible for us to calculate the allelic
diversity. As described above, S alleles were divided
into two groups, class I and class II, based on the
sequence similarity between allelic genes of the three
S-locus genes, SLG, SRK and SP11. In the case of
SLG and SRK, within a group, allelic diversity was
from a few percent to around 20%. In contrast,
between groups, the diversity was over 30%. In
contrast, the allelic diversity of SP11 was higher than
that of SLG and SRK.5),6) Particularly in the class I
alleles of SP11, only certain amino acid residues
(glycine, aromatic amino acid and cysteine residues)
were conserved in the mature protein.23) From
determination of the tertiary structure with 2-D
NMR analysis, these amino acids were found to be
important for recognition specificity.62) From com-
parison of SP11 and SRK sequences, these two genes
encoding the pollen ligand and stigma receptor,
respectively, were found to have co-evolved in a
trans-specific mode.6),23),39)

5. Molecular mechanisms of the SI reaction

After identification of both male and female S
determinants, the next research targets were the
physical interaction between SP11 and SRK, and the
SRK-related signaling cascade following this inter-
action. For the physical interaction between SP11
and SRK, different results have been reported by two
laboratories. Shimosato et al.63) showed that both
the S-domain and membrane-anchoring domain were
necessary for allele-specific interaction by using cross-
linking and immunological methods. In contrast,
Kachroo et al.64) showed that only the S-domain of
SRK could interact with SP11 in the allele-specific
manner by using an immunoprecipitation method.
In the future, after determination of the tertiary
structure of SRK, this inconsistency is likely to be
resolved.

The physical interaction of SP11 and SRK was
found to trigger autophosphorylation of SRK in an
allele-specific manner.65) The question was then, how
does the SI signal transduce in the cytoplasm? In
order to clarify the SRK signaling cascade, several
SRK-interacting molecules were identified and char-
acterized.66)–72) MLPK (M locus protein kinase),
identified from the self-compatible line yellow sarson,
was found to encode a novel membrane-anchored
cytoplasmic protein kinase,71) which interacts with
SRK directly.72) ARC1 (arm repeat containing 1) and
THL1 (thioredoxin 1) were isolated using a yeast
two-hybrid system with the kinase domain of SRK as
a bait.66) ARC1 interacts with the kinase domain of
SRK in a phosphorylation-dependent manner and
has E3 ubiquitin ligase activity, indicating that the
proteasome protein degradation system is involved
in SI signal transduction. Furthermore, an ARC1
knock-out line showed the self-compatible pheno-
type.67),69) At present, only MLPK and ARC1 have
been identified as positive effectors of the Brassica SI
reaction. Other identified factors found to date may
be negative effectors of SI.68),71) Recently, novel self-
compatible lines of B. rapa have been identified,
which will enable progress to be made in under-
standing the role of other interactive molecules in the
complete SI signaling cascade.73) A schematic model
of the current understanding of Brassica SI is shown
in Fig. 8.

Other approaches to studying the SI signaling
cascade have used Arabidopsis species. Because
Arabidopsis thaliana is a self-compatible model plant,
a very large number of traits of A. thaliana have
been studied.74)–77) In addition, for research into the
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evolution of SI and SC, Arabidopsis species are
powerful research tools.78)–82) As describe above,
A. thaliana is a model cruciferous plant, which
naturally has an SC phenotype, whereas other
species, such as A. halleri and A. lyrata, are self-
incompatible. A. thaliana modified to be self-incom-
patible is a powerful tool for genetic approaches to
studying the SI signaling cascade, because the whole
genome sequence of A. thaliana has been deter-
mined26) and other genetic tools (e.g. T-DNA tag
lines, many ecotypes and microarray expression data)
are available (http://www.arabidopsis.org/). To pro-
duce self-incompatible A. thaliana by transforma-
tion, two approaches have been used. Nasrallah
and co-workers introduced SP11 and SRK from
self-incompatible A. lyrata into self-compatible A.
thaliana (C24 ecotype) and the resulting transgenic
A. thaliana, with both SP11 and SRK, exhibited
the SI trait.83),84) On the other hand, Tsuchimatsu,
Suwabe and co-workers introduced only SP11 into
the Wei-1 ecotype of A. thaliana, which has a
functional SRK but shows SC, to produce a self-
incompatible A. thaliana.85) In the course of sequenc-
ing analysis of the S-locus genes in self-incompatible
A. halleri, the SP11 gene of haplogroup A of
A. halleri was found to be quite similar to the

disrupted SP11 gene of haplogroup A of A. thaliana;
it is suggested that a 213-bp inversion of SP11 might
have occurred in A. thaliana. Furthermore, from
test-crosses using the pollen of the haplogroup A of
A. halleri, it was found that several ecotypes (e.g.
Wei-1) were functional on the female side of the SI
system, indicating that these ecotypes may have a
functional SRK and SI signaling cascade. By using
Wei-1 as a representative of these ecotypes, self-
incompatible transgenic A. thaliana plants carrying
the restored SP11 gene were successfully produced
(Fig. 9).85) This transgenic A. thaliana plant with the
restored SP11 transgene, in which the recipient and
donor are of the same origin, is an impressive
achievement because this transformation represents
the artificial retrograde evolution of the SI gene.

6. Molecular analysis of dominance relationships
between S alleles

An important characteristic of Brassica SI is the
dominance relationships between S alleles, which are
a consequence of the sporophytic behavior of S
genes.9)–13) Genetic experiments have revealed four
characteristics of the dominance relationships of
cruciferous plants:9)–13) (1) co-dominance is more
frequent than dominance/recessiveness; (2) domi-

Fig. 8. Schematic model for self-pollen recognition in Brassica species. Male and female S determinant genes, SP11 and SRK, are located
at the S locus. SP11 is predominantly expressed in the tapetum cells of anther locules, and accumulates on the pollen surface during
pollen maturation. On self-pollination, SP11 molecules penetrate into the papilla cell wall, and interact with SRK in an S-allele-
specific manner. Phosphorylated SRK interacts with MLPK. After the subsequent signal transduction, which has not yet been
determined, rejection of the self-pollen occurs.
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nance/recessiveness in the pollen is observed more
frequently than that in the stigma; (3) dominance
relationships act independently in the pollen and
stigma; and (4) non-linear dominance relationships
are also observed, and are more frequent in the
stigma than in the pollen. Discovery of the molecular
mechanisms of dominance relationships has been
based on these genetic features.

In Brassica pollen, dominance relationships
of SI are regulated by transcription of SP11. In
sporophytic tapetum cells of anthers of S hetero-
zygous plants, SP11 derived from the dominant
allele is normally expressed, whereas expression
of the recessive SP11 is significantly suppressed
(Fig. 10A).86),87) Interestingly, linear dominance
relationships (S9 > S44 > S60 > S40 > S29) are also
observed in B. rapa.10),87) In this case, dominance/
recessiveness of S44, S60, S40 alleles could be altered,
indicating involvement of epigenetic regulation.87)

From observation of the methylation level of the
promoter region of SP11 in several S heterozygotes, it
was shown that the recessive SP11 is specifically
methylated in S heterozygotes.88) Recently, it was
further demonstrated that the small RNA produced
from the dominant allele could activate methylation
of the recessive allele. In transgenic experiments, S60

(class II) transformants with a class-I-derived small
RNA region (S9) showed SC, and their promoter
regions were highly methylated, as in the S9S60

heterozygote, indicating that the small RNA from
the dominant allele functions in trans to induce
transcriptional silencing of the recessive allele
(Fig. 10B).89)

In contrast, dominance relationships of SI at
the female side appear to be post-transcriptionally
regulated by SRK, unlike transcriptional suppression
of SP11.90) The different mechanisms operating in the
male and female side in the dominance relationships
of SI are consistent with the four genetic character-
istics described above.9)–13)

7. Future prospects

As outlined in this review, the Brassica SI
reaction has several interesting biological features,
including cell-cell communication, ligand-receptor
interaction, signal transduction, phosphorylation
cascade, molecular evolution, allelic polymorphism
and epigenetic regulation by small RNAs. For an
overall understanding of SI events, collaborative
research with diverse biological approaches (metab-
olome, proteome, bioinformatics, phenome, tran-
scriptome, etc.) is necessary (e.g. refs. 91–119).

Fig. 9. Restoration to SI phenotype in Arabidopsis thaliana. The
Wei-1 ecotype usually has a self-compatible phenotype (for-
mation of large siliques and many seeds). The reason for the SC
phenotype Wei-1 is a gene inversion within the 2nd exon of
SP11, although SRK is functional. When transformed to restore
an active SP11, the transformants showed the self-incompatible
phenotype (formation of small siliques and no seeds).

Fig. 10. Schematic model for molecular mechanisms of domi-
nance relationships at the pollen side. (A) In the case where S1 is
dominant over S2, dominant transcripts of SP11, S1-SP11, are
specifically expressed in the S1S2 heterozygote. However, S2-
SP11 transcripts are not detected in the S1S2 heterozygote on
RNA gel blot analysis. The results demonstrate that the
dominance relationship at the pollen side is regulated at the
transcriptional level. (B) In the dominant S allele, small RNA,
termed Smi (SP11 methylation inducer), is specifically pro-
duced, and its nucleotide sequence is highly similar to the
promoter region of the recessive SP11 gene. This small RNA
induces the methylation of recessive SP11, and represses the
recessive SP11 at the transcriptional level.
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SI is one of the most interesting phenomena in
sexual reproduction. Building on recent progress in
sexual plant reproduction research, the molecular
processes in male and female gametophyte develop-
ment have now been extensively dissected in several
plant species (e.g. refs. 104, 118–136). Such accumu-
lation of biological knowledge will also contribute to
the understand of pollen germination and pollen tube
behavior in the SI recognition reaction.

Interestingly, peptide signals similar to SP11 are
common in several other related phenomena (fertil-
ization, morphogenesis, plant-microbe interaction,
etc.; e.g. refs. 15, 137–141). To elucidate a complete
overview of the peptide signaling, further analysis
of protein-protein interaction by use of the yeast
two-hybrid system, protein cross-linking, etc. is
required,142),143) in addition to the genetic analysis
described above. To date, binding of SP11 to the
SRK receptor, the tertiary structure of SP11 and the
variable regions of SP11 have been determined.62)

However, the tertiary structure of SRK has not yet
been established. When this has been carried out,
the precise SP11-SRK allelic-specific interaction will
provide new insight into SP11-induced SRK activa-
tion, as has been achieved for brassinosteroid and
BRI1.144)

As the next important topics for study in pollen-
stigma interaction, genetic barriers between different
species and interspecific incompatibility are interest-
ing phenomena, and these are also related to the SI
reaction. Although genetic analysis of interspecific
incompatibility is complicated due to the difficulty or
impossibility of obtaining hybrid seeds and their
progenies,1) the understanding of molecular mecha-
nisms in the SI recognition reaction will help to
identify the molecular players in interspecific incom-
patibility. In addition, overcoming the barrier of
interspecific incompatibility could lead to the estab-
lishment of new species. From observations of
chromosome hybridization, it was determined that
the amphidiploid B. napus originated from crosses
between B. rapa and B. oleracea.145) Interestingly,
the parental diploids, B. rapa and B. oleracea, show
SI phenotype and their amphidiploid, B. napus,
has the SC phenotype. In some SC B. napus, the
mutated genes conferring SC phenotype have been
identified and characterized.146),147) Taken together,
these points indicate that further studies of these
Brassica SI and SC lines should contribute to our
understanding of the molecular mechanism of evolu-
tion from SI to SC during polyploidy formation under
cultivation.

Very many reports have been published of the
early physiological studies.51) In Brassica, breakdown
of SI was reported to be caused by several treat-
ments, including CO2 gas, NaCl solution, high
temperature, organic solvents and electrical stimula-
tion.148)–154) However, the molecular mechanisms
involved in overcoming the SI recognition reaction
are still unknown. Understanding the mechanisms in
overcoming SI will contribute to the discovery of the
missing links in our understanding of the physiolog-
ical aspect of the Brassica SI reaction. Another factor
is the cuticle layer of stigma papilla cells, which is
important for Brassica SI. Even in an incompatible
cross the pollen tube can penetrate into the cuticle
layer,155) indicating that there is ‘cutinase’ activity
on the surface of pollen grains. Recently, results of
studies on cuticle wax in other tissues have been
published,156),157) and these are informative for
dissecting Brassica SI. Thus, from earlier studies we
can obtain many pointers to advance Brassica SI
research in the future.

Finally, just as we were starting to write this
review article, the huge earthquake (magnitude 9.0)
hit the northern part of Japan, around Sendai, on
March 11, 2011.158) The Fukushima Daiichi nuclear
power station was severely damaged by the huge
earthquake and tsunami, and radio-active elements
(iodine-131, cesium-137 and other compounds) were
released into the environment.159) For the remedia-
tion of soil contaminated by radioactive compounds,
especially cesium-137, Brassica species are poten-
tially very useful.160)–165) Of course, Brassica crops,
cabbage, turnip, broccoli, etc., are important as food
crops for people in all parts of the world. In addition,
the breeding of Brassica crops has the potential to
contribute to production of bio-fuel, phytoremedia-
tion and phytomining.166) In view of these points,
understanding molecular mechanism of the SI recog-
nition reaction in Brassica species will be important
in establishing F1 hybrid seed production in the
future.
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