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Long-term depression and other synaptic plasticity in the cerebellum

By Tomoo HIRANO*1,†

(Communicated by Masao ITO, M.J.A.)

Abstract: Cerebellar long-term depression (LTD) is a type of synaptic plasticity and has
been considered as a critical cellular mechanism for motor learning. LTD occurs at excitatory
synapses between parallel fibers and a Purkinje cell in the cerebellar cortex, and is expressed as
reduced responsiveness to transmitter glutamate. Molecular induction mechanism of LTD has been
intensively studied using culture and slice preparations, which has revealed critical roles of Ca2D,
protein kinase C and endocytosis of AMPA-type glutamate receptors. Involvement of a large
number of additional molecules has also been demonstrated, and their interactions relevant to LTD
mechanisms have been studied. In vivo experiments including those on mutant mice, have reported
good correlation of LTD and motor learning. However, motor learning could occur with impaired
LTD. A possibility that cerebellar synaptic plasticity other than LTD compensates for the defective
LTD has been proposed.
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Cerebellar circuit and long-term
depression (LTD)

The organization of the cerebellum reflects its
involvement in motor control. The cerebellum con-
sists of cortex and nuclei, and major inputs to the
cortex come from the spinal cord, pons etc. through

mossy fibers. Mossy fibers send excitatory glutama-
tergic outputs to granule neurons, which in turn
transmit excitatory synaptic information to Purkinje
cells (Fig. 1). Cerebellar granule cells are most
numerous neurons in the whole brain. The cell body
of a granule cell is located in the granular layer,
and extends an axon to the molecular layer, where
it bifurcates to form parallel fibers. Purkinje cell
dendrites show extensive branching in the molecular
layer and receive >150,000 parallel fiber synaptic
inputs. Purkinje cells are the sole output neurons
in the cortex. Its axon projects to a cerebellar or
vestibular nucleus, and inhibits neurons through
secretion of .-amino butyric acid (GABA) there. A
Purkinje cell receives another type of excitatory
synaptic inputs from a neuron in an inferior olivary
nucleus through a climbing fiber. A single climbing
fiber forms >300 synapses on a Purkinje cell, and
provides powerful excitatory drive. In contrast, each
parallel fiber forms only one or a few synapses on a
Purkinje cell, although the number of parallel fibers
innervating a Purkinje cell is huge. This synaptic
organization is maintained throughout the cerebellar
cortex.1),2)

Knowing the above explained characteristic
and relatively simple cerebellar neuronal circuit,
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Brindley, Marr, Ito and Albus proposed models about
the functioning mechanism of the cerebellum.1),3)–6)

According to Albus,6) the major information flow
in the cerebellum is mossy fibers > granule cells
(parallel fibers) > Purkinje cells > cerebellar and
vestibular nuclear neurons. On the other hand, a
climbing fiber codes an error signal reflecting the
motor performance failure. When a motor perform-
ance ends in failure, the signal conveyed by a
climbing fiber works to depress the synaptic trans-
mission between parallel fibers and a Purkinje cell,
thereby weakening the connection which might have
contributed to the failed action (Fig. 2). This model
predicts that coupled activation of parallel fibers
and a climbing fiber should depress the information
flow from the parallel fibers to a Purkinje cell.
This prediction was supported experimentally by an
in vivo recording of Purkinje cell activities performed
by Ito and colleagues,7) and the phenomenon has
been called long-term depression (LTD).

LTD is caused by the decreased transmission
efficacy at synapses between parallel fibers and a
Purkinje cell. The direct demonstration of this
synaptic LTD was first provided in a slice prepara-
tion by Sakurai,8) and then in a culture preparation
by Hirano,9) who had developed a co-culture prepa-
ration of cerebellar neurons and explants of inferior

olivary nuclei.10)–12) Then, it was demonstrated that
coupled repetitive activation of inferior olive neurons
and a granule cell induces LTD of excitatory
postsynaptic current at synapses between a granule
cell and a Purkinje cell (Fig. 3), whereas repetitive
activation of only a granule cell induces the long-term
potentiation (LTP).9) Potentiation of the trans-
mission was also reported in a slice preparation.8)

Following this study, Linden and colleagues devel-
oped a simpler and easier method to monitor LTD in
the culture.13) These in vitro experimental systems
facilitated research on the cellular and molecular
mechanism of LTD.

On the other hand, implication of LTD in motor
learning has also been studied. Two model motor-
learning paradigms have been widely used. One is
adaptation of vestibulo-ocular reflex,1),14)–16) and
another is classical conditioning of eye-blink re-
sponse.17) Studies to examine effects of destruction
or inactivation of the cerebellum and also in vivo
neuronal activity recording, have been perfor-
med.17),18) More recently, motor learning in mutant
mice with defects in LTD was examined. Positive
correlation between LTD andmotor learning has been
reported,19)–22) although some studies have found
normal motor learning with suppressed LTD.23),24)
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Fig. 1. Main cerebellar cortical circuits. LTD occurs at parallel fiber-Purkinje cell synapses.
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Fig. 2. Main information flow in the cerebellar system.

Fig. 3. LTD induction in a co-culture preparation of cerebellar neurons and inferior olive explants.9) A, A scheme of electrophysiological
experiments. A granule cell (G) and/or an inferior olive explant (I) were stimulated, and whole-cell recording was obtained from a
Purkinje cell (P). B, Voltage responses of a Purkinje cell to the stimulation of either an inferior olive explant (IO) or a granule cell
(GR). C, Excitatory postsynaptic currents (EPSCs) recorded from a Purkinje cell before and after the conjunctive stimulation of an
inferior olive explant and a granule cell. D, Amplitudes of EPSC in a Purkinje cell before and after the conjunctive stimulation.
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than LTD to motor learning has also been sug-
gested,25)–28) that might account for the discrepancy.

In the following section, I will review and discuss
cellular and molecular mechanisms of LTD, implica-
tion of LTD in motor learning, and synaptic
plasticity other than LTD in the cerebellum.

Molecular mechanism of LTD

Synergistic action of two synaptic inputs.
LTD is induced by coupled activation of two
glutamatergic synaptic input pathways, parallel
fibers and a climbing fiber. How each contributes to
LTD and where the two signaling pathways converge
in a Purkinje cell, are critical for understanding
the induction mechanism of LTD. Activation of a
climbing fiber induces a complex spike and large
Ca2D influx.29),30) Subsequent studies have revealed
that climbing-fiber activation required for the LTD
induction can be replaced by direct depolarization
or intracellular Ca2D increase in a Purkinje cell,31)–33)

where the increase in intracellular Ca2D concentra-
tion is necessary for the induction of LTD.34) On the
other hand, parallel fiber inputs activate not only the
ionotropic glutamate receptor but also metabotropic

glutamate receptor mGluR1 at the postsynaptic
membrane of a Purkinje cell. mGluR1 activation is
required for LTD induction.19),35) mGluR1 is coupled
to Gq protein and activates phospholipase C, which
produces inositol 1,4,5-trisphosphate (IP3) and diac-
ylglycerol. IP3 induces Ca2D release from the intra-
cellular endoplasmic reticulum through IP3 recep-
tor,36) and Ca2D and diacylglycerol synergistically
activate protein kinase C (PKC)37) (Fig. 4).

Involvement of PKC, in LTD induction has
been demonstrated.38)–40) PKC, is a convergent
point for the two signaling pathways, as it is
synergistically activated by intracellular Ca2D which
is located downstream of a climbing fiber pathway
(Fig. 4), and by diacylglycerol located downstream of
a parallel fiber pathway. Ca2D is another convergent
point, because both pathways work to increase the
cytoplasmic concentration. Activation of a climbing
fiber induces Ca2D influx through voltage-gated Ca2D

channel on the plasma membrane, while activation of
a parallel fiber induces the Ca2D release from intra-
cellular stores through IP3 receptor downstream
of mGluR1. mGluR1 also opens transient receptor
potential canonical 3 (TRPC3) channel permeable
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Fig. 4. Major molecular cascades regulating LTD. AMPAR, AMPA receptor; mGluR1, metabotropic glutamate receptor 1; Gq, Gq
protein; PLC, phospholipase C; DG, diacylglycerol; PKC, protein kinase C; IP3, inositol 1,4,5-trisphosphate; IP3R, IP3 receptor;
VGCC, voltage-gated Ca2D channel; ER, endoplasmic reticulum.
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to Ca2D.41) IP3 receptor is also another convergent
point of the two pathways,42) as its activity is
regulated by the cytoplasmic Ca2D concentration.
Some studies demonstrated that large intracellular
Ca2D increase by itself is sufficient to induce
LTD.43),44) In a normal condition however, the
intracellular Ca2D increase caused by activation of
a climbing fiber is insufficient to induce LTD, and
additional activation of mGluR1 followed by pro-
duction of IP3 and diacylglycerol seems to be
required for LTD induction8),9),13) (Fig. 4).

Expression of LTD as reduced glutamate
receptor responsiveness. LTD is accompanied by
the reduced quantal size of excitatory synaptic
currents at synapses between a granule cell and
a Purkinje cell,45) and by the reduced ionotropic
glutamate receptor responsiveness of a Purkinje
cell.13) Reduction in the number of AMPA-type
ionotropic glutamate receptor (AMPAR) occurs
during LTD,46) and enhanced AMPAR endocytosis
has been proposed as a main mechanism of the
LTD expression.47),48) Unbinding of phosphorylated
AMPAR from a postsynaptic protein GRIP (gluta-
mate receptor interacting protein) and binding to
another protein PICK1 (protein interacting with
C kinase 1) seem to be implicated in the LTD
induction.49)

Other molecules involved in LTD. In
addition to the above mentioned molecules, a large
number of signaling molecules are implicated in LTD.
Involvement of mitogen activated protein kinase
(MAPK; also called extracellular signal-regulated
kinase 1/2, ERK1/2) was reported.50) Subsequent
studies proposed activation of MAPK and PKC
together with Raf, MAPK/ERK1/2 kinase (MEK),
phospholipase A2 (PLA2) and arachidonic acid
(AA), constitute a positive feedback loop that
support the LTD induction.51)–53) Recently, it was
reported that Raf kinase inhibitory protein mediates
PKC-dependent MAPK activation.53)

Nitric oxide (NO) is also implicated in LTD
through activation of guanylyl cyclase, which pro-
duces cyclic guanosine monophosphate (cGMP).54)

cGMP activates protein kinase G (PKG), which in
turn phosphorylates G substrate. Phosphorylated
G substrate suppresses protein phosphatase 2A
(PP2A), which counteracts PKC. Thus, suppression
of PP2A through the NO and cGMP pathway
supports the LTD induction.18),55),56)

Involvement of Ca2D/calmodulin-dependent
protein kinase II (CaMKII) in LTD induction was
reported more recently. In ,CaMKII knockout

juvenile mice LTD is impaired, and conversion of
LTD to LTP occurs in the adult mutant mice.57)

OCaMKII knockout mice also show LTD impaire-
ment.58) However, how CaMKII is involved in LTD
has been unclear. Kawaguchi and Hirano (2013)
recently proposed that CaMKII might contribute to
the increase in cytoplasmic cGMP through regulation
of phosphodiesterase 1 (PDE1), and that CaMKII
activity could also interact with NO pathway.59)

Another interesting molecule involved in LTD is
glutamate receptor /2 subunit (GluD2), an iono-
tropic glutamate receptor-related molecule which is
specifically expressed on the postsynaptic membrane
at parallel fiber-Purkinje cell synapses.21),60),61) Sup-
pressing expression or knockout of GluD2 abrogated
LTD,62),63) and studies that followed revealed that
the intracellular C-terminal of GluD2 plays critical
roles.64)–66) Interestingly, it was reported that knock-
out of an intracellular GluD2 binding protein
delphilin, facilitated the LTD induction through
reduction of the intracellular Ca2D dependence.22)

Recently, interaction of GluD2 with mGluR1 and
TRPC3 channel was reported.67)

Late phase of LTD. How long LTD can last
was addressed in a culture preparation by measuring
amplitudes of miniature excitatory postsynaptic
currents (mEPSCs) after a chemical LTD induc-
tion.68) LTD of mEPSC amplitude lasts for >1day.
The late phase of LTD depends on both mRNA and
protein synthesis.68),69) Existence of PKC-independ-
ent intermediate phase of LTD was also suggested.52)

Conflicts between results in culture and slice.
As described above, molecular and cellular mecha-
nisms of LTD have been studied using slice and
dissociated culture preparations. Each has advan-
tages and limitations. The former retains the
structural integrity, and the latter is more amenable
to experimental manipulations and imaging of
neurons and synapses.

NO-dependence of LTD was reported in sli-
ces,54)–56) but not in a culture preparation.70) How-
ever, our recent study in culture showed that NO and
CaMKII pathways converge on cGMP, and that NO-
dependence of LTD induction becomes weak when
CaMKII activity is high.59) These results suggest that
previous NO-independent LTD induction in culture
might have occurred in a condition where CaMKII
activity in a Purkinje cell is elevated.

Another point of conflict has been the duration
of PKC activation after the LTD induction. The first
theoretical model of molecular signaling cascades
inducing LTD postulated long-lasting activation of
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PKC,51) and immunohistochemistry in a slice prep-
aration showed sustained translocation of PKC, to
the plasma membrane.52) Classical PKC including
PKC, is fully activated after binding to diacylgly-
cerol in the plasma membrane.37) In contrast, long-
term translocation of PKC, was not reported with
live-imaging of PKC, fused to GFP (green fluores-
cent protein) in culture, although transient very clear
translocation occurred and PKC activity was neces-
sary for the LTD induction.39) We recently noticed
that weak PKC, translocation was sustained in
spines of cultured Purkinje cells after the LTD
induction,59) suggesting that the different conclusions
between the preparations can be ascribed to the
differences in detection methods and/or levels of
PKC, translocation. Therefore, critical neuronal
properties are not likely to be qualitatively different
between slice and culture preparations.

Cultured Purkinje cells show specific patterns of
synapse formation that preserves the connectivity
found in vivo10),12),71) as do cultured hippocampal
neurons,72) and recapitulate essential properties of
LTD such as Ca2D and PKC-dependent induction.
Culture preparations provide good visibility of
synapses and have made it possible to selectively
stimulate a single presynaptic terminal.73) Our recent
study using a novel culture preparation and total
internal reflection fluorescent microscopy, demon-
strated subtype-specific exocytosis and transport of
AMPAR during hippocampal LTP.74) Thus, together
with slice preparations, reduced culture preparations
have been facilitating the molecular and cellular level
analyses of synaptic plasticity.

Summary and remaining questions. Molecu-
lar mechanism of LTD induction has been extensively
studied, and it has been clarified that intracellular
Ca2D increase, PKC activation and endocytosis of
AMPAR are critical. A large number of molecules are
implicated in the LTD induction, and molecular
interactions relevant to LTD have been studied.
However, how some critical molecules such as GluD2
are involved in LTD has not been clarified yet.

Functional implication

LTD and motor learning. Contribution of
LTD to motor learning has been intensively studied
in two models, adaptation of vestibulo-ocular reflex
(VOR)1),14)–16) and classical conditioning of eye blink
response.17) VOR is a reflex to stabilize the visual
image during head motion. Vestibular organs such as
semi-circular canals detect head motion, and drive
eye balls to move in the opposite direction of head

motion so that the visual image becomes stable.
The timing and amplitude of VOR needs to be fine-
tuned so that it works adequately in daily life. The
adaptation of VOR occurs when the eyeball motion
fails to stabilize the visual image. Experimentally this
condition is given by rotating a surrounding screen
during the rotation of a head-fixed animal. When the
screen is rotated in the same direction of an animal,
the rotation of eyeballs gets smaller, and when the
screen is rotated in the opposite direction of an
animal, the rotation of eyeballs becomes larger. Such
adaptive change of VOR has been regarded as a type
of motor learning. In VOR a climbing fiber conveys
the retinal slip information,75) which contributes to
the LTD induction. Neuronal activity recording from
a Purkinje cell in rabbits and monkeys showed VOR-
related activities in the cerebellar flocculus,18),76)–78)

which constitutes a side pathway of VOR and
regulates the timing and amplitude of the reflex
(Fig. 5). There have been contradictory ideas about
the importance of LTD in the VOR adaptation.15),16)

Implication of LTD in classical conditioning has
also been studied focusing on the eye-blink re-
sponse.17),79),80) Here, an unconditioned eye-blinking
is induced by applying air-puff to an eye or electrical
stimulation around an eye. Coupling air puff
stimulation with the preceding conditioning sound
presentation leads to the occurrence of conditioned
eye-blinking response to the sound stimulation.
Involvement of LTD in this conditioned response
has been proposed,17),79),80) although other brain area
such as the hippocampus also contribute to the eye
blink conditioning.17),81),82)

Studies using mutant mice. Cellular and
molecular analyses have revealed molecules that play
critical roles in the LTD induction, and have
prompted to generate knockout mice defective in
LTD. Earlier studies reported deficits of LTD and
motor learning in mGluR1 knockout and GluD2
knockout mice.19),63) Purkinje cell-specific expression
of PKC inhibitor also abrogates LTD and affects
motor learning.20) In mice, besides VOR adaptation,
adaptation of optokinetic response (OKR) has also
been studied as a model motor learning. OKR is
reflexive eye movement following the movement of
large visual field, and works to stabilize the visual
image during head motion together with VOR.
Delphilin knockout mice showed facilitated LTD
induction and enhanced adaptation of OKR.22)

Collectively, many studies have found good correla-
tion between LTD and motor learning. However, a
recent study using mutant mice in which endocytosis
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of AMPAR is suppressed, has shown normal motor
learning with impaired LTD,24) and challenged the
idea that LTD is necessary for motor learning. Other
synaptic or intrinsic plasticity mechanisms as de-
scribed below might compensate for the LTD defect.

Summary and remaining questions. Physio-
logical roles of LTD in a behaving animal have been
studied using LTD-deficient mutant mice. Adapta-
tion of reflex eye movements such as VOR and OKR,
and classical conditioning of eye blink response have
been used as model motor learning paradigms.
Several studies reported good correlation between
LTD and motor learning, although contradictory
results have also been reported. Thus, functional
significance of LTD has become enigmatic. To clarify
roles of LTD in an animal, examination of the effects
of acutely inducing or suppressing LTD at specific
synapses on motor control and learning, and con-
versely demonstration of LTD at specific synapses
induced by a motor learning paradigm, will be
important.

Cerebellar synaptic plasticity other than LTD

Synaptic plasticity in a Purkinje cell. Besides
LTD, post- and presynaptic LTP take place at
synapses between parallel fibers and a Purkinje cell.
Presynaptic LTP is induced by repetitive stimulation

of parallel fibers at a higher frequency (4–8Hz) and
postsynaptic LTP by that at a lower frequency
(1Hz).8),9),45),83)–85) Interestingly, we recently found
that GluD2 was involved not only in postsynaptic
LTD but also in presynaptic LTP.86) Contribution of
LTP to motor learning has also been suggested.87)

Theorists have argued that a unidirectional change
of synaptic efficacy alone is insufficient for effective
learning, and that both LTP and LTD are required.
In addition, it was reported that postsynaptic LTD
also occurs at climbing fiber-Purkinje cell synapses.88)

Inhibitory synapses on a Purkinje cell also show
synaptic plasticity. Activation of a climbing fiber or
potent depolarization of a Purkinje cell causing a
large intracellular Ca2D increase, induces the en-
hancement of GABAergic transmission, which is
called rebound potentiation (RP).89),90) RP is accom-
panied by the enhanced responsiveness to GABA,
and works to decrease the excitability of a Purkinje
cell similarly to LTD. RP is induced by the
conditioning stimulation of a climbing fiber or by
depolarization of a Purkinje cell. These stimulations
were also used to induce LTD coupled with
stimulation of parallel fibers. Thus, RP might work
synergistically with LTD. Molecular induction mech-
anism of RP has been extensively studied,90)–96)

which revealed that several molecules such as
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Fig. 5. Neuronal circuits regulating vestibulo-ocular reflex.
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CaMKII, protein phosphatases, PDE1 and mGluR1
are involved in both RP and LTD. Therefore,
induction of RP might interact with that of LTD.
Recently, we extended a theoretical model of intra-
cellular molecular signaling cascade of LTD51)

incorporating RP-related molecules.59) Notably, RP
is a cell-wide phenomenon, which is different from
synapse-specific induction of LTD. However, there is
synapse-specific regulation mechanism for RP.90),91)

Recently, we generated RP-deficient transgenic
mice,97) and found that VOR adaptation was affected
in these mice (unpublished results), suggesting the
involvement of RP in motor learning.

At inhibitory synapses on a Purkinje cell,
presynaptic plasticity mechanisms have also been
reported.98),99) They are depolarization-induced sup-
pression of inhibition (DSI)98) and depolarization-
induced potentiation of inhibition (DPI).99) DSI is
short-lasting (about a minute) suppression of GABA
release mediated by endocannabinoid, and DPI is
potentiation of GABA release mediated by glutamate
and presynaptic NMDA receptor. DPI enhances the
inhibitory synaptic transmission on a Purkinje cell
together with RP, although it does not last as long
as RP.

In addition to synaptic plasticity, plastic change
of intrinsic excitability of a Purkinje cell was reported
recently.100) Depolarization or parallel fiber burst
stimulation amplified the amplitude of synaptic
response and that of passively propagated spike
through down-regulation of a type of KD channel.
Such dendritic plasticity might also work with
synaptic plasticity to regulate the activity of a
Purkinje cell.

Synaptic plasticity on postsynaptic neurons
other than a Purkinje cell. Parallel fiber-molecular
layer interneuron synapses are suggested to show
bidirectional plasticity in a direction opposite to that
found at parallel fiber-Purkinje cell synapses.101),102)

Coupled activation of a climbing fiber and parallel
fibers induces LTP, whereas stimulation of only
parallel fibers induces LTD at parallel fiber-inter-
neuron synapses. As molecular layer interneurons
inhibit a Purkinje cell, the plasticity can synergisti-
cally work with LTD and LTP at parallel fiber-
Purkinje cell synapses. Although direct synapse
formation of climbing fibers on molecular layer
interneurons has not been demonstrated, it has been
reported that climbing fibers influence molecular
layer interneurons through spillover of glutamate.103)

Synaptic plasticity has also been reported in
mossy fiber-granule cell synapses in the granular

layer and in the cerebellar nuclei.104),105) In cerebellar
nuclei, mossy fiber-nuclear neuron synapses show
plasticity depending on the activity of inputs from
Purkinje cells.105) Some studies suggested that the
memory transfer from the cortex to the nuclei occurs
in the later phase of motor learning.106) Purkinje cell
output-dependent nuclear synaptic plasticity might
contribute to such memory transfer. However, it is to
be noted that the number of neurons and synapses are
much larger in the cortex. Thus, the memory transfer
to nuclear synapses could lose information contents.

Conclusion and perspective

Cerebellar LTD is a long-lasting decrease in
the transmission efficacy at parallel fiber-Purkinje
cell synapses, which is induced by co-activation of
parallel fibers and a climbing fiber. Intensive research
efforts have revealed that Ca2D, protein kinases and
endocytosis of AMPA receptors are involved in LTD.
LTD has been regarded as an essential cellular
mechanism for motor learning, although contra-
dictory results have also been published. Implication
of cerebellar synaptic plasticity other than LTD in
motor learning has been proposed. Comprehensive
understanding of molecular regulation mechanism of
LTD, and elucidation of specific functional roles of
LTD and other synaptic plasticity in the cerebellum,
are important issues to be addressed in future.
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