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Abstract: Natural sterols often occur as a heterogeneous mixture of homologs, which had
disturbed the progress of steroid research. Development and application of GC methodology
overcame this difficulty and enabled us to obtain detailed sterol profiles. Together, fine synthesis of
stereo-defined isomers and homologs of steroids having oxygenated side chains allowed us to
compare them with natural samples as well as to investigate structure-activity relationship.
Advance of HPLC technology also facilitated the determination of the stereochemical structure of
naturally occurring steroidal compounds, which were obtained only in minute amounts. This review
highlights three topics out of our steroid research that have been performed mainly at Tokyo
Institute of Technology around 1970–1990. These are sterol metabolism in insects focusing on the
mechanism of the conversion of plant sterols to cholesterol and ecdysone biosynthesis, the synthesis
and biochemical research of active forms of vitamin D3 derivatives, and the synthesis and
microanalysis of plant hormone brassinosteroids.
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Introduction

Since 1930s biologically active mammalian
steroids had been paid attention to many researchers
and tremendous studies on steroids had provided
numerous brilliant results. On the other hand, plant
steroids were known only as final products in the
biosynthesis of isoprenoids and thus were not paid
attention due to lack of knowledge on their biological
activities. In 1957, discovery of cholesterol in algae by
Tsuda et al. became a topic in this field.1) Before
1970s mammalian steroid hormones which have short
or no side chains were major targets for the steroid
research.2) Steroids originated from non-mammalian
sources such as fungi, insects and plants showed

interesting side chains oxygenated at C20, C22, C23,
C25 and C26 as found in antheridiol,3) ecdysteroids4)

and withanolides.5) These steroids have stigmastane
(C29), cholestane (C27) and ergostane (C28) skel-
etons, respectively.

Chemical and biochemical studies on the ste-
roids having side chains had experienced several
difficulties in the isolation of the active steroids
due to their faint amount in the biological pool
and in the separation of the stereoisomers. Thus, we
had established a novel gas-chromatography (GC)
technology, which enabled us to cleanly separate
natural steroids and also developed the chemical
synthetic methods in conjunction with the biochem-
ical methods to solve the problems, which interfered
with the research on the steroids having functional-
ized side chains. These methods were applied to the
investigation of plant and insect sterols.6)

GC technology enabled us the microanalysis of
sterol mixtures and the synthetic organic chemistry
made it possible to prepare all stereoisomers through
the stereoselective reactions at the steroid side
chains. Thus, we synthesized numerous kinds of the
steroids having oxygenated side chains and revealed
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the roles of those steroids in their biological
activities.7)

Sterol metabolism in insects

1. Dealkylation mechanism of plant sterols
to cholesterol. Insects, unlike most plants and
animals, are incapable of de novo sterol biosynthesis
and therefore require a dietary or exogenous source
of sterol for their normal growth and development.
The sterol requirement of insects is, in most cases,
satisfied by cholesterol (1), which is the principal
sterol in insects and serves as the structural
component of cell membranes and as biogenetic
precursor of the molting hormone, 20-hydroxyecdy-
sone (2). In phytophagous insects the requirement
can be fulfilled also with plant sterols e.g., sitosterol
(3), campesterol (4) and stigmasterol (5), since these
C-24 alkylated sterols are metabolically converted to
cholesterol. Thus, dealkylation of phytosterols is an
important metabolic step in many insects.

GC analysis of the sterol fraction of silkworm
larvae indicated the presence of cholesterol, together
with small amounts of campesterol and sitosterol.8)

The sterol fraction of mulberry leaves contained
sitosterol and a smaller amount of campesterol.9) It
was thus suggested that these plant sterols were
converted into cholesterol and we had an interest
in the conversion mechanism. Indeed we showed
that [3H]-sitosterol was converted into cholesterol in
the silkworm Bombyx mori in 1967.10) Meanwhile,
fucosterol (6), 24-methylenecholesterol (7) and des-
mosterol (8) were postulated as intermediates of
the dealkylative conversion principally by Svoboda’s
group utilizing tobacco hornworm.11)

However, the precise C-24–C-28 bond-cleavage
mechanism of plant sterols has remained unan-
swered. We started the study on the dealkylation
mechanism around 1968, since we possessed a sizable
amount of fucosterol (6), available from brown
algae such as Sargassum ringgoldianum through our
search for marine resources.12) It was a lucky break
to find out that BF3 treatment of 3-acetate of
fucosterol 24,28-epoxide (FE) (9) yielded desmoster-
ol acetate together with usual epoxide-carbonyl
rearrangement products during chemical studies of
the fucosterol "

24(28)-double bond.13) The unique
rearrangement of FE was accompanied by the
formation of acetaldehyde and thus expected to
involve hydrogen migration from the C25 to C24
position (See Fig. 2).

The rather unexpected C-C bond cleavage
reaction was regarded as a biomimetic version of

the phytosterol dealkylation. We proved this hy-
pothesis by several lines of evidence utilizing silk-
worm larvae. First, 3H-label of fucosterol adminis-
tered to larva was trapped in FE and 3H-label of
FE was incorporated into cholesterol.14) Secondly,
hydrogen migration from C-25 to C-24 was verified
by feeding [25-3H]-24-ethylcholesterol followed by
determining chemically the position of the label of
the resulting desmosterol.15) Thirdly, the 24,28-imine
analogue of FE was shown to be a potent inhibitor
of the enzyme termed fucosterol epoxide lyase that
catalyzes the conversion.16) The intermediacy of FE
in sitosterol dealkylation was supported in three
other insects.17) We subsequently indicated that
the same hydrogen migration took place in the
dealkylation of stigmasterol and campesterol, now
utilizing [2H]-labeled substrates coupled with GC-MS
analysis.18) These studies have established the
phytosterol dealkylation mechanism as summarized
in Fig. 1 (Ikekawa pathway).

We then investigated several stereochemical
issues of the dealkylation processes. Incubation with
a cell free preparation obtained from midguts of
silkworm larvae revealed that (24R,28R)-fucosterol
epoxide and (24R,28S)-isofucosterol ("24(28)-Z isomer
of 6) epoxide, out of the four diastereomers at the C-
24 and C-28 positions, were converted into desmos-
terol by the lyase.19) Similarly, (24R)-24-methylene-
cholesterol 24,28-epoxide (10), but not the (24S)-
isomer, became a substrate for the enzyme.20) Both
(24R,28R)- and (24S,28S)-FEs were, however, char-
acterized from the whole body of silkworm larvae.21)

Yet another stereochemical preference with respect
to the epoxide isomers was reported for the insect
Tenebrio molitor.22) These discrepancy needs to be
clarified, including the question as to which epoxide
diastereomers are formed from the "

24(28)-olefinic
substrates.

Metabolic fate of the diastereotopic C-26 and C-
27 methyl groups of FE was investigated using a cell
free preparation from midguts of silkworm larvae,
and [pro-R]-methyl group (designated as open circle
in Fig. 2) was turned out to become sterespecifically
(E)-methyl of desmosterol.23),24) The stereochemistry
in the desmosterol reduction was explored with the
cell-free preparation in the presence of NADPH
cofactor by applying deuterium-decoupled 1H,13C
shift correlation NMR analysis of the biosynthesized
cholesterol.25) The study established that the hydro-
gen addition by sterol-"24-reductase took places in
anti fashion from the re-face at C-24 and the si-face
at C-25 (Fig. 2). The steric course of the hydrogen
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addition was also investigated with rat liver cell-free
preparation and plant callus, which confirmed the
same anti addition. This required revision of syn
addition mechanism originally reported by Caspi and
co-workers in rat liver system more than 30 years
ago. The stereochemistry of the sitosterol dehydro-
genation (cis- vs. trans-dehydrogenation) leading to
fucosterol, but not isofucosterol,26) remains an open
question. The gene encoding the insect sterol-"24-
reductase of Bombyx mori has been identified
recently,27) although those encoding the enzymes
of the preceding three steps remain unidentified.
Characterization of these genes may facilitate search

for inhibitors of the phytosterol dealkylation, which
would be environmentally friendly insecticides for
agrochemical use. Also, they can be used for the
conversion of plant sterols to useful sterols function-
alized in the side-chain by the fermentation of
engineered microbes.

2. Biosynthesis of insect molting hormones.
At the beginning of the 1940s, Fukuda first proposed
that prothoracic ground (PG) secrets a molting
hormone.28) In addition, our group reported a brain
hormone-like activity of cholesterol administered
to silkworm pupae as early as 1963 when the
structure of ecdysone remained unclear.29) Since then,
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,-ecdysone (ecdysone) (11) and O-ecdysone (20-
hydroxyecdysone) (2) were isolated from the silk-
worm and their structures were elucidated.4),30),31)

However, it had not been clear whether PG is a
responsible organ that produces a molting hormone,
and if so, which substance(s), either ecdysone and/or
20-hydroxyecsysone, is produced by PG.

Chino and co-workers challenged this problem
and succeeded in culturing PG organs that produced
a hormonally active substance.32) We had developed
a micro-analytical method of ecdysteroids based on
GC-MS (mass chromatography mode) analysis of
their trimethylsilyl ether derivatives,33) and success-
fully characterized the substance released from the
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cultured PGs to the medium as ecdysone in 1973.32)

Ecdysone thus formed is converted into 20-hydroxy-
ecdysone by 20-hydroxylase distributed in peripheral
tissues such as fat body.

GC analysis of a PG extract revealed the
occurrence of 7-dehydrocholesterol (12) as well as
7-dehydrositosterol and 7-dehydrocampesterol, the
amounts of which changed in proportional to that
of ecdysone,34) supporting a view that 7-dehydro-
cholesterol is a biosynthetic intermediate next to
cholesterol.

Accumulation of highly polar ecdysteroid con-
jugates in the diapause eggs of the silkworm Bombyx
mori was first reported by Ohnishi et al.35) His group
also noted that the ovaries of B. mori exhibited
high molting hormone activity.36) Since then, we
worked jointly with his group on the structure
analysis of ovarian ecdysteroids, and characterized
six ecdysteroids, 2-deoxyecdysone (13),37) 2,22-di-
deoxy-20-hydroxyecdysone (14),39) ecdysone (11), 2-
deoxy-20-hydroxyecdysone (15),38) 20-hydroxyecdy-
sone (2), and a unique ecdysteroid bombycosterol
(16)40) as major ecdysteroids in Bombyx ovaries.
Their conjugate forms were elucidated to be all
phosphate esters (X F PO3

2! in Fig. 3).41) Figure 3
also shows the principle biosynthetic route (X F H
in Fig. 3) of 20-hydroxyecdysone, although the
mechanism of an early stage (so-called black box),
leading to the 14-hydroxy-5O-enone (17), has re-
mained unsolved. Our characterization of various
free ecdysteroids and their phosphate derivatives in
Bombyx ovaries/eggs has contributed to establish the
generally accepted view that the ecdysteroid con-
jugates are a physiologically inactive form that are
stored in eggs and serve as a source of an active
ecdysteroid like 20-hydroxyecdysone that is indis-
pensable for embryonic developments. It is interest-
ing to note that ecdysteroids work on a membrane
receptor in addition to the nuclear ecdysone receptor
(EcR).42)

Synthesis and biochemical research
of active forms of vitamin D3 metabolites

and their analogs

1. Structure determination of vitamin D3

metabolites. New era of steroid research was
opened by the identification of 25-(OH)-VD3 (18, for
the structure see Fig. 8) and 1,25-(OH)2-VD3 (19) as
the active metabolites of VD3.43) During 1968–71,
DeLuca and Tanaka mainly contributed to the
discovery of the hydroxylated VD3. The most
intriguing findings were the importance of secosteroid

derivatives having oxygenated side chains, although
1,-hydroxylation is essential to elicit their biological
activity. After identification of 1,25-(OH)2-VD3,
24,25-(OH)2-VD3 (20) was identified by MS analy-
sis.44) However, the configuration at C24 of 20
remained unestablished.

At this moment we had a large amount of
desmosterol (8) chemically derived from fucosterol
(6). Thus, our research work was started from the
determination of the C24 configuration. At first,
24-OH cholesterol (21) was prepared from 8 and
was separated into two isomers (21a/21b). Their
C-24 configurations were determined with modified
Horoeu’s method using GC.45)

Two C24-isomers of 24,25-(OH)2 cholesterol
(22) were prepared from 8 and the resulting mixture
was separated by HPLC of the tri-TMS derivatives
(Fig. 4). Both 24S and 24R isomers (22a and 22b)
were converted into VD3 form, and assayed for
VD3 activity by DeLuca and Tanaka of Univ. of
Wisconsin-Madison, showing that the 24R isomer
exhibited potent activity (vide infra). This was a
start of the long-term joint research between their
groups and ours lasting nearly 20 years, and bio-
logical activities of our synthetic VD3 samples
were always evaluated by their group thereafter.
HPLC comparison of the synthetic samples with
natural 24,25-(OH)2-VD3 (20) revealed that 24R
isomer (20a) was correspondent to the natural
metabolite.46)

Subsequently, 25,26-(OH)2-VD3 (23) was iden-
tified as a metabolite of 25-(OH)-VD3.47) Then, two
C25-isomers of 25,26-(OH)2 cholesterol were stereo-
selectively synthesized from (24R)- and (24S)-"25-24-
hydroxycholesterol derivative (24a/24b) as shown
in Fig. 5. Interestingly, 25,26-(OH)2-VD3 had both
25S and 25R configuration (23a/23b) in an equal
amount as revealed by HPLC comparison with the
synthetic 25,26-(OH)2-VD3,48) while 24R isomer was
a sole metabolite for 24,25-(OH)2-VD3.

A further research on VD3 metabolism using
[14C]-25-(OH)-VD3 led to identification of 23,25-
(OH)2-VD3 (25)49) and 25-(OH)-VD3 26,23-lactone
(calcidiol lactone, 26),50) which are 23-hydroxylated
VD3 derivatives.

The 23S configuration of 25 was elucidated as
follows. (23S)-23,25-(OH)2-VD3 and its (23R)-isomer
were synthesized according to Fig. 6. Coupling of
the aldehyde (27) with metallylmagnesium chloride
yielded the C-23 hydroxy derivative as an epimeric
mixture, which was separated into the epimers (28a
and 28b) in the form of 3,23-dibenzoate (RFBz).
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Compounds 28a and 28b were converted to the
3,23S,25-triol (29a, RFH) and its 23R-isomer (29b),
respectively. The configuration at C-23 of 29a was
determined to be S by X-ray analysis. Compounds

29a and 29b (RFBz) were further converted into
VD3 form. HPLC comparison of the stereo-defined
synthetic samples with the natural metabolite
established the 23S configuration of 25.51)
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The synthesis of four isomers at C23 and C25 of
calcidiol lactone was accomplished by the stereo-
specific iodolactonization or selenolactonization of
the trans- and cis-"22-26-carboxylic acids (30 and
31). The introduction of the 25-OH group was
achieved through the oxidation at the C,-position
of the 26-ester or lactone moiety. The stereoselective
introduction of the hydroxyl group at C25 was
dependent on the configuration at C23 of the lactone
and thus, the hydroxyl group of the other config-
uration was introduced in the ester moiety before
the lactonization as shown in Fig. 7.52) The 23S,25R
configuration of calcidiol lactone was also established
by HPLC comparison with the natural metabolite.53)

2. Biological activity for vitamin D3 analogs
having hydroxylated side chain. Vitamin D3

biosynthesized at the skin is transformed at liver
and then kidney to the hydroxylated derivative,
1,,25-(OH)2-VD3 (19). This activated hormone
binds vitamin D3-binding protein in blood and is
transferred to the target cells. Then, 1,,25-(OH)2-
VD3 binds vitamin D3 receptor (VDR) in the cell
nucleus. It also forms RXR-VDR-1,,25-(OH)2-VD3

complex with 9-cis-retinoic acid receptor (RXR),
which binds vitamin D-responding element (VDRE)
present at the upstream of vitamin D3-dependent

gene. Then, translation-coupled co-activator binds
this complex to regulate the gene expression. Thus,
the complex in the process will become the targets of
vitamin D3 derivatives.

In relation to the configuration at the 24 position
of 24,25-(OH)2-VD3 (20), we prepared two isomers of
24-(OH)-VD3 and found that (24R)-24-(OH)-VD3

has the same mobilization of bone Ca2D and
calcification activity as 25-(OH)-VD3 and a similar
activity to 24,25-(OH)2-VD3, while the 24S isomer
showed little activity.54) Although both isomers were
metabolized to the respective 24,25-(OH)2-VD3, only
24R isomer was further converted to 1,24,25-(OH)3-
VD3 (32).55) Thus, 1,-hydroxylase recognizes only
24R isomer to give the active metabolite. When we
assume that a particular residue in the enzyme
requires the interaction with the hydroxyl group at
C24 in the substrate-binding site, the conformation
of the C25–C27 side chain moiety should affect the
binding of the steroid skeleton. This is a unique
example that the stereochemistry at the side chain
affects the enzymatic reaction at A-ring of steroids.
Furthermore, only 25S-isomer of 25,26-(OH)2-VD3

was converted to 1,25,26-(OH)3-VD3 (33) by 1,-
hydroxylase. When the 3D-structure of 1,-hydrox-
ylase is available, it will be revealed whether the
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same residues are contributed to the highly specific
recognition of the stereochemistry of the hydroxy-
lated side chains. According to the VD3 metabolites
identified so far, the plausible metabolic pathway can
be summarized in Fig. 8.

The activity of calcification of these hydroxy-
lated VD3 derivatives is as follows: 24,25-(OH)2-VD3

is almost equal to 25-(OH)-VD3 and 25,26-(OH)2-
VD3 is weaker than 24,25-(OH)2-VD3. Furthermore,
23,25-(OH)2-VD3 is weaker than 25,26-(OH)2-VD3.
These results indicate that the hydroxylation at 23,
24 and 26 is a deactivation step of 25-(OH)-VD3.
Interestingly, the C22-hydroxylated (R)- and (S)-
22,25-(OH)2-VD3 lost VD3 activity, although these
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derivatives have not been found in the metabolites.
This suggests that the hydroxyl group at the C22
position disturbs their binding or affects the binding
mode to the VD3 receptor.

3. Fluorine derivatives and the enhancing
activities of VD3. We prepared 26,27-F6-, 24-F2-,
and 23-F2-1,25-(OH)2-VD3 derivatives (34, 35, 36,
respectively) to block the hydroxylation (Fig. 9). As
we expected, 24-F2-1,25-(OH)2-VD3 (35) showed 5–
10 times higher activity than 1,25-(OH)2-VD3 and
26,27-F6-1,25-(OH)2-VD3 (34) showed 10 times high-
er activity than 1,25-(OH)2-VD3, which maintained
its activity for a week.56) This is because compound
34 underwent 23-hydroxylation and the metabolite
remained in cells for a longer time. 23-F2-1,25-(OH)2-
VD3 derivative (36) did not enhance the activity of
1,25-(OH)2-VD3.

4. A new rearrangement of the side chain—
Biological activity of side chain carbon homo-
logues. It was reported that 1,25-(OH)2-VD3

receptor is distributed in not only intestine, kidney,
and bone, but also stomach, skin, pituitary gland,
parathyloid gland and lung cancer cells.57) Further-
more, 1,25-(OH)2-VD3 was reported to strongly
facilitate the cell differentiation of human myeloid
leukemia cells.58) In order to develop anticancer and
anti-leukemia drugs, it is thus required to seek for
derivatives that have potent cell differentiation
activity (10!7

–10!8M for 1,25-(OH)2-VD3) but
much more weak calcium regulating activity (10!9

–

10!10M for 1,25-(OH)2-VD3), i.e., separation of the
activities.

DeLuca and Tanaka found a new metabolite
that strongly bound to the cytosol VD3 receptor in
addition to the 24- and 1-hydroxylated metabolites
when they incubated 24-epi-25-OH-VD2 ((24R)-24-
methyl 25-(OH)-VD3) (37) with avian kidney. The
mass spectrum of the metabolite suggested that it
could be either "

22-26-methyl-1,25-(OH)2-VD3 (38)
or 24-homo-"22-1,25-(OH)2-VD3 (39). Thus, the
two compounds were synthesized and the following
comparison with the metabolite established that the
metabolite was 38.59) Although the exact mechanism
of this unique reaction is not clear, it might involve
the cleavage of the C23–C24 bond in the metabolism
as reported by Djerassi et al. in the biosynthesis of
the marine sterols (Fig. 10).60)

In addition to the unique formation of the
26-homo skeleton, the metabolite showed 10 times
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higher myeloid leukemia cell differentiation activity
with little VD3 activity than 1,25-(OH)2-VD3. This
suggested that some homo VD3 side-chain skeletons
have different activity from the native VD3 skeleton.
In this course, we have synthesized 26,27-dimethyl-,
26,27-diethyl-, 26,27-dipropyl-1,25-(OH)2-VD3 (40,
41 and 42).61) The dimethyl and diethyl analogs
showed 2.5 and 10 times higher myeloid leukemia
cell differentiation activity, respectively, than 1,25-
(OH)2-VD3. The dipropyl analog did not show the
activity. A series of 24-homologated 1,25-(OH)2-VD3

analogs were also synthesized. Evaluation of the cell
differentiation activity revealed that 1- or 2-carbon
homologation (39, 43) increased the activity by 10-
fold, but 3-carbon homologation (44) reduced the
activity by one half (Fig. 11).

5. Development of new drugs. As described
in the above two sections, the effects of fluorine
substitution and carbon homologation in the side
chain have been elucidated. We, therefore, synthe-
sized side chain modified analogues, 24,24-F2-24-
homo-1,25-(OH)2-VD3 (45) and 24,24-F2-26,27-di-
methyl-VD3

62) (46) (Fig. 12). The latter showed
more potent VD3 activity than 1,25-(OH)2-VD3,
whereas the former was much less active. However,

the former was at least ten times more active than
1,25-(OH)2-VD3, for cell growth inhibitor of HL-
60 cells. (22S)-24-Homo-26,27-F6-1,22,25-(OH)2-VD3

(DD-003, 47) was also synthesized as a possible drug
candidate. This compound exhibited 10-fold greater
inhibiting effect on the growth of HT-29 human
colonic adenocarcinoma cells than 1,25-(OH)2-VD3,
without calcium regulating activity.63)

(24R)-1,24-(OH)2-VD3, which was synthesized
at the early stage of our research in considering
the importance of side chain hydroxylation, is an
excellent antipsoriasis drug. This compound binds to
chick intestinal cytosol receptor for 1,25-(OH)2-VD3

as equally as 1,25-(OH)2-VD3, is as active as 1,-
OH-VD3, and exhibits reduced toxicity due to rapid
clearance. (24R)-1,24-(OH)2-VD3 is metabolized to
1,24,25-(OH)3-VD3 upon the action of 25-hydroxy-
lase. 26,27-Cyclo-"22-1,24-(OH)2-VD3 developed by
Leo Pharmaceutical Products is a drug also for
antipsoriasis.66) 22-Oxa-1,25-(OH)2-VD3 has been
developed as a drug for antipsoriasis and hyper-
parathyroidism by Chugai Pharmaceutical Co.
Ltd.64) 26,27-F6-1,25-(OH)2-VD3 (34) has been
developed as a drug of hyperparathyroidism.
(23S,25R)-1,25-(OH)2-VD3-26,23-lactone (48) shows
only osteogenesis activity without bone resorption.
Furthermore, (24R)-24,25-(OH)2-VD3 (20) was
found to have osteogenesis activity.65) Thus, the
compounds synthesized for investigation of the side
chain structure of the VD3 metabolites have con-
tributed to not only biochemical and biomedical
research but also the development of new drugs.

The recent research on hydroxylated steroids
and their receptors opens up a new horizon of the
research on biological function of steroid and its
related compounds. A further investigation of VDR/
NR ligands, in particular, molecular recognition of
ligand and receptor would end up with a fruitful
result.
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Fig. 11. Side-chain homologs of VD3.
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Plant hormone brassinosteroids

1. Synthesis of brassinosteroids. In 1970,
Mitchell and coworkers of the US Department of
Agriculture reported that pollen of rape (Brassica
napus) contains a new growth-promoting factor.67)

Their further efforts culminated in the isolation and
structure elucidation of brassinolide (49) from 500
lbs. of bee-collected rape pollen in 1979.68) A recent
investigation on its receptor revealed that brassino-
lide binds a membrane protein which belongs to Toll-
like receptor family alike mammal nuclear receptors
for steroid hormones.69)

The synthesis of brassinolide was completed by
the use of Sharpless epoxidation as a key reaction
to introduce the 23R-hydroxyl group together with
24R-methyl group as outlined in Fig. 13.70) Starting
from 22-aldehyde (50), the reaction with Grignard
reagent generated from 3-methyl-1-butyn gave a
mixture of 22R and 22S-hydroxy derivatives (51) in
a similar ratio. Then, 22R-hydroxy derivative was
converted to 23-cis allyalcohol (52). The Sharpless
oxidation using vanadyl oxidant specifically provided
the desired epoxyalcohol (53). Although direct
introduction of the methyl group at C24 by opening
the 23,24-epoxide was not successful, a cyano group
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Fig. 13. Stereoselective synthesis of brassinolide.
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was introduced specifically at C24 to give 22R,23R-
diol (54). The conversion of the cyano group to the
methyl group (55) was successfully carried out via
the aldehyde.

The AB ring was then derived to the 6,7-
secolactone moiety. At first, hydroboration of 5,6-
double bond for the acetonide derivative (56) and
the following oxidation of the resulting 6,-hydroxyl
group into the oxo group gave 6-oxo derivative (57).
Then, dehydration of the hydroxyl group at C3
gave 2,3-olefin (58), which was oxidized to afford
the 2,,3,-diol derivative (59). The Baeyer-Villiger
oxidation with m-chloroperbenzoic acid gave the
desired lactone (60) as a major product, which was
converted to brassinolide through the following
deprotection. The selectivity observed in this Baeyer-
Villiger reaction is rather unusual, but the electro-
negative 2,3-diol group would control the selectivity.

The other groups reported similar synthetic
routes for the synthesis.71),72) Furthermore, we have
developed the method for synthesizing brassinoste-
roids such as castasterone (61) and dolicholide
(62).73)

2. Microanalysis of brassinosteroid deriva-
tives. Microanalytical methods for brassinosteroids
were developed based on GC-MS and HPLC tech-
niques. For GC analysis, bis-methaneboronate
(BMB) ester derivative (63) of brassinosteroids was
used.74) A series of the BMB derivatives were
separated with detection limits at nanogram levels
(Fig. 15).75) For HPLC, the bis-naphthaleneboro-
nates (64) were preferably used for monitoring by a
UV or a fluorimetric detector which enabled us to
measure the amount of the derivatives down to
10–20 pg.76)

The structures of brassinosteroids were deter-
mined by means of MS using several ionization
techniques such as FD, CI, EI and FAB methods.
The selective ion monitoring in GC-MS revealed the
presence of brassinone (28-norcastasterone) in the
leaves of green tea and the insect galls of Distylium
racemosum, and the presence of castasterone in the
leaves and the insect galls.77) Dolichosterone (65)
and castasterone were detected in the rice plant78)

and brassinone, castasterone (61), brassinolide and
24-epibrassinolide (66) were identified in bee pollen
of the broad bean.79) The analysis of various plant
sources indicated that brassinosteroids are widely
distributed in the plant kingdom as a mixture of
several chemical entities (Fig. 14).80),81)

The microanalytical method also enabled us to
quantitatively measure the location and amounts of

brassinosteroids in plants. For example, brassinolide
and 28-norbrassinolide were detected in leaves of
Distylium racemosum in 23 and 156 ng/kg, respec-
tively, but not in its insect galls, while castasterone
and dolichosterone were detected in the insect galls
in 2500 and 5000 ng/kg, respectively, and in the
leaves in 133 and 16 ng/kg, respectively.

3. Structure-activity study and practical use
of the analogs. The synthetic methods developed
by us enabled to prepare more than 50 analogs of
brassinosteroids for the study of structure-activity
relationship analysis.82) Since a structure of brassi-
nosteroids/receptor complex is not available yet, it is
not clear how the hydroxyl groups in the side chain
are recognized at the ligand-binding site of the
receptor. However, we found that the 22,23-vicinal
diol groups with 22R,23R or 22S,23S configuration
are important for the receptor activation. In contrast,
the isomers with 22R,23S or 22S,23R configuration
were inactive. With respect to the C24 substituent,
28-norbrassinolide was equally active as brassinolide,
while 28-homobrassinolide was 10-fold less active
than brassinolide. Interestingly, a side chain trun-
cated analog, 26,27-bisnorbrassinolide, was active as
brassinolide.

24-Epibrassinolide (66) and 24-epicastasterone
are rare natural brassinosteroids that have 24S
configuration. The activity of 24-epibrassinolide was
comparable to that of brassinolide. Since our group
had found a considerable amount of brassicastrol
(67) in rape seed oil by GC analysis of sterol content,
we developed a production method of 24-epibrassi-
nolide (66) in industrial scale (Fig. 16) as a promis-
ing candidate for agricultural application.83) Field
testing on brassinosteroids such as 24-epibrassinolide
and homobrassinolide for increasing crop yield was
carried out in various countries and promising results
were obtained not only for wheat, rice, soybean, and
corn, but also for several vegetables.84)

Collaborative studies between Japan and China
on the practical application of 24-epibrassinolide
in agriculture were started in 1985. A series of
preliminary green house tests using 24-epibrassino-
lide supplied by our group were carried out at the
Shanghai Institute of Plant Physiology. These early
studies showed that 24-epibrassinolide accelerated
the growth of cereals (wheat and corn), vegetables
(watermelon, cucumber and grape), and tobacco.
Follow-up field trials have been pursued in Shanghai,
Henan and Zhejiang Provinces over a five-years
period and the significant effects of 24-epibrassinolide
have been observed in this trials. 24-Epibrassinolide
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as a mixture with its 22S,23S isomer are currently
used in China, Belarus and other countries.

Conclusion

Progress in chemistry and biology of the major
three steroidal hormones that have oxygenated side
chains has been summarized.

In insect, it has been established that fucosterol
24,28-epoxide is a key intermediate in the deal-
kylative conversion of sitosterol to cholesterol. An
ecdysteroid biosynthesized and released in prothora-
cic gland was unambiguously determined as ecdysone
by the application of GC-MS analysis developed
by us. Furthermore, detailed analysis of free and
conjugated ecdysteroids in silkworm ovaries led to
the findings that the phosphate form is an inactive
stocked form and converted to the free ecdysteroid
during embryonic development.

The stereo-structures of vitamin D3 metabolites
such as 24,25-(OH)2-VD3 and calcidiol lactone were
unambiguously determined by HPLC comparison
of the natural metabolites with synthetic isomers.
These basic studies have revealed the details of the
metabolism of vitamin D3 and clarified the physio-
logical importance of the stereochemistry at the side
chain of vitamin D3. These understandings of the
roles of the side chains were extended to the design
and synthesis of more potent analogs having a
specific and enhanced activity, which was eventually
linked to the development of drugs for antipsoriasis
and hyperparathyroidism.

More than 50 brassinosteroids, including the
first synthesis of brassinolide, were synthesized in our
laboratory and used as authentic standards in GC-
MS microanalysis for natural brassinosteroids and in
the study of their structure-activity relationships.
These studies have ended up with the development
of 24-epibrassinolide, which is an active and useful
analog in agriculture.

For more than 40 years, we have investigated
biologically active steroids focusing on those bearing
oxygenated side chains and have clarified the
importance of the position and configuration of
hydroxyl groups and number of carbons in the
oxygenated side chains. It is interesting that simple
sterols such as cholesterol and campesterol serve as
the substrates of oxidative metabolisms and the
resulting oxygenated metabolites, 20-hydroxyecdy-
sone, brassinolide and 1,25-(OH)2-VD3 commonly
play roles of physiologically important hormones
in their growth in insects, plants and human,
respectively. Thus, the modification and utilization

of steroid side chains commonly occur and are
important in maintenance of the physiological
conditions of the life. It should be finally mentioned
that intimate collaborations with prominent biolo-
gists enabled us to bring fruitful results mentioned
above.
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