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Abstract: Non-relativistic Faddeev and Faddeev-Yakubovsky calculations were made for
K!pp, K!ppn, K!K!p and K!K!pp kaonic nuclear clusters, where the quasi bound states were
treated as bound states by employing real separable potential models for the K!-K! and the K!-
nucleon interactions as well as for the nucleon-nucleon interaction. The binding energies and spatial
shrinkages of these states, obtained for various values of the �KN interaction, were found to increase
rapidly with the �KN interaction strength. Their behaviors are shown in a reference diagram, where
possible changes by varying the �KN interaction in the dense nuclear medium are given. Using the
$(1405) ansatz with a PDG mass of 1405MeV/c2 for K!p, the following ground-state binding
energies together with the wave functions were obtained: 51.5MeV (K!pp), 69MeV (K!ppn),
30.4MeV (K!K!p) and 93MeV (K!K!pp), which are in good agreement with previous results of
variational calculation based on the Akaishi-Yamazaki coupled-channel potential. The K!K!pp
state has a significantly increased density where the two nucleons are located very close to each
other, in spite of the inner NN repulsion. Relativistic corrections on the calculated non-relativistic
results indicate substantial lowering of the bound-state masses, especially of K!K!pp, toward the
kaon condensation regime. The fact that the recently observed binding energy of K!pp is much
larger (by a factor of 2) than the originally predicted one may infer an enhancement of the �KN

interaction in dense nuclei by about 25% possibly due to chiral symmetry restoration. In this respect
some qualitative accounts are given based on “clearing QCD vacuum” model of Brown, Kubodera
and Rho.

Keywords: kaonic nuclear few-body systems with shrinkage, double kaonic nuclei, Faddeev-
Yakubovsky method, chiral symmetry restoration, high-density strange nuclei and matter

I. Introduction

For the past decade we have studied deeply
bound and dense kaonic nuclear cluster (KNC) states
using an empirically based coupled-channel �KN
complex potential,1)–7) which is characterized by a
strongly attractive I F 0 �KN interaction coupled

with the ’: channels. Its strength was adjusted to
reproduce the mass 1405MeV/c2 for the so-called
$(1405), which was assumed as the quasi-bound
K!-p state (called $* 2 $(1405) ansatz). The most
spectacular prediction, first shown in ref. 1, is that
light nuclei involving a �K as a constituent are shrunk
to dense baryonic objects with densities nearly
3-times as much as the normal nuclear density.
The structure of the most basic system, K!pp, first
predicted in 2002,2) was studied in detail by a realistic
three-body calculation,6),7) and hence a molecular
covalent nature of the strong binding was revealed.
The K!pp system was shown to have a structure of
$*-p, where the quasi-bound I F 0 �KN pair that is
identified as $* 2 $(1405) behaves like an “atom”.
This study led us to a new concept of nuclear force,
“super-strong nuclear force”, which is caused by a real
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�K migrating between two nucleons, conceptually
similar to the covalent bonding in hydrogen mole-
cules: Hþ

2 and H2,8) and has a binding strength nearly
4-times as large as that of the ordinary nuclear force.
The uniqueness of this bonding is that it is caused by
a strongly interacting real boson, �K. This new type
of force was given a name by Nishijima:9) “kaonic
origin of nuclear force”, which is contrasted to the
ordinary “pionic origin of the nuclear force”.

In these papers6),7) we have predicted a new
formation mechanism of K!pp in the process of pp !
KD D p D $* ! KD D K!pp, whereas a normal $

particle is produced in pp ! KD D p D $. The pp
collision at high energy is known to produce $(1405)
among other hyperons, as revealed in missing-mass
spectra, MM(pKD).10),11) It was theoretically clarified
that the produced $* serves as a doorway to form a
complex $*-p : K!pp. This sticking process occurs
strongly when the formed K!pp has a small p-p
distance that matches the small proximity of the pp
collision with a short collision length of 90.3 fm,
helped by a large momentum transfer of 91.6GeV/c
at Tp 9 3GeV. In other words, the doorway particle,
$*, sticks to the participating p at an enormously
high probability to form a K!pp, if and only if it is
dense, and thus the occurrence of this reaction with
a large K!pp cross section would provide definite
evidence for a dense �K nuclear state. Thus, the pp
reaction has a great advantage for KNC production
compared to statistical coalescence processes where
deeply bound and dense states are hardly formed.12)

Recently, this pp reaction process was searched
for in old DISTO experimental data of exclusive
events of pp ! p D $D KD at Tp F 2.85GeV, and the
process was indeed found to take place.13) (An
indication of K!pp had been reported before from a
stopped-K! experiment on light nuclei with a similar
binding energy.14)) A broad peak showing M F

2267 ’ 2(stat) ’ 5(syst)MeV/c2 was revealed with
as much intensity as the free $* emission. The $*
production observed at large angles of proton
emission in pp! p D KD D $* reactions15),16) indi-
cates that the $* production takes place in a short
collision length of pp,17) justifying the basis of our
proposal. Thus, this experiment has indicated that
the state observed is a dense K!pp. In addition,
the same reaction was studied at Tp F 2.5GeV, a
substantially lower energy compared with 2.85GeV.
The same K!pp with M F 2267MeV/c2 was ex-
pected kinematically, but it was not populated at
2.5GeV.15),18) We have reached the following con-
clusion. At this lowered incident energy the $*

production was very much decreased toward the
production threshold, so that the production of K!pp
through $* sticking was also suppressed. In this way,
the role of $* as a doorway to form K!pp was
understood. The observed binding energy of K!pp
in DISTO is much larger than the original prediction
of refs. 5, 7. Indeed, a view with a 25% enhancement
over the original �KN interaction seems to be com-
patible with the DISTO observation. We call this
enhanced empirical interaction “DISTO”. This fact
strongly suggests that we have to consider seriously
possible enhancement effects of the �KN interaction
in dense KNC systems.

The simplest double �K nuclei, K!K!pp and
K!K!ppn, were also predicted to be deeply bound
with binding energies of 117MeV and 221MeV,
respectively.5) Extending the predicted and proven
mechanism of a large sticking of $* to p, we proposed
a similar formation mechanism for K!K!pp via a
double $*-$* doorway.19),20) The K!K!pp is ex-
pected to be formed abundantly by pp collisions of an
incident proton energy of about 7GeV. Thus, the
double �K nuclei are within the reach of experimental
studies in the near future at J-PARC and FAIR. It is
extremely interesting to search for double- �K nuclear
clusters, since they may serve as precursors to kaon
condensation.21)–23) In view of the DISTO data, the
�KN interaction, and thus the actual binding of
K!K!pp, may be much stronger than in the original
prediction.

On the other hand, there are serious theoretical
discrepancies concerning KNC bindings, essentially
coming from the different starting ansatzes, whether
A) the $(1405) mass is at the traditional “phenome-
nological” value, 1405MeV/c2,24)–26) or B) a “chiral
weak” value, 1420MeV/c2 or more together with a
double-pole structure (for instance, see ref. 27). The
latter Chiral ansatz leads to a substantially shallow
�KN potential, and thus to kaonic states of small
binding energies.28) Very recently, Barnea et al.29)

made a hyperspherical harmonics calculation for the
K!pp, K!ppn and K!K!pp systems based on the
“chiral weak” interaction, and obtained very shallow
bound states. Naturally, all of these binding energies
are substantially smaller than our earlier predictions,
based on the “strong regime” �KN interaction.1)–7) We
point out that there is no clear experimental evidence
to support the “chiral weak” ansatz and predictions.
Recent HADES data on pp! p D $* D KD 16) is also
in favour of the strong regime with the PGD value.17)

In any case, we herewith introduce such a
practical way as a “reference diagram” (explained
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below) to evaluate the difference of binding energies
and sizes of KNC for various �KN interactions for
comparing different theories on equal footing. A
possible change of the �KN interaction due to the
shrinkage of KNC is studied from the view point
of chiral symmetry restoration. Clear evidence for
partial restoration of chiral symmetry in a nuclear
medium has been obtained from deeply bound pionic
states,30)–32) which indicates that the quark conden-
sate that exists in the free :N interaction decreases
by 930% at the normal nuclear density. A similar
and much more dramatic effect is expected in the
case of �K nuclear clusters because of the attractive
character of the interaction, and thus of a tremen-
dously amplified nuclear shrinkage effect, which we
discuss at the end of this paper.

Since the developments of the Faddeev33) and
the Faddeev-Yakubovsky34) methods to solve the 3-
and the 4-body Schrödinger equations, respectively,
in the form of integral equations, they have been
successfully applied in many regions of few body
physics because of their nature to give rigorous wave
functions under assumed two-body interactions. This
is due to the appropriate division of the 3-body (4-
body) t-matrix and accordingly of the wave function
into the Faddeev (Faddeev-Yakubovsky) compo-
nents, so that the rigorous derivation of the wave
function is most straightforwardly achieved under
separable 2-body potentials. It has also been clearly
shown that the Faddeev-Yakubovsky calculation can
have a high precision under local realistic potentials,
as shown by a benchmark test calculation of a four-
nucleon bound state.35) Application of this method
has been extended to the strangeness nuclear physics
by Filikhin and Gal.36) In the problem of �K-bound
high-density nuclear systems, the Faddeev and the
Faddeev-Yakubovsky methods should have an ad-
vantage to clarify the structure of the wave function
in the central region of the system where more than
two particles are very close to each other so that
the wave function can be complicated, because, in
contrast to the variational methods and the wave
functional expansion methods like the hyperspherical
harmonics method, they presuppose no structures of
the wave function.

K!pp has been treated by Shevchenko, Gal
and Mares,37) Shevchenko, Gal, Mares, and Révai,38)

and Ikeda and Sato39)–41) in the integral equation
formalism. In these calculations, they used the Alt-
Grassberger-Sandhas (AGS) equation42) to find the
resonance energies and widths. The AGS equation is
directly connected to the scattering matrix elements

via the channel resolvents, and is thus fit to calculate
reaction quantities, but is not directly connected to
the wave function. This is the reason why these
authors derived only the energies and widths of
K!pp. On the other hand, to study the shrinkage
and formation of dense nuclear configurations inside
the KNC systems induced by the strongly attractive
�KN interaction, deriving the wave functions of the
KNC states is indispensable. In nuclear bound states
it is a general feature that the bound-state energy
arises as a strong cancellation between the kinetic
energy and the potential energy, and since the dense
structure of the system may be linked to a large
kinetic energy expectation value, the calculation of
this quantity from the wave function may contain
important information about the shrinkage behavior
of the KNC systems. In the present Faddeev and
Faddeev-Yakubovsky calculations, we put emphasis
on the derivation and detailed analysis of the wave
functions.

II. Faddeev-Yakubovsky formalism

For systematic calculations of the ground-state
energies and the density distributions of the light
�K-nuclear systems, we performed 3-body and 4-body
calculations with separable pair potentials in the non-
relativistic Faddeev and Faddeev-Yakubovsky for-
malisms. In the Faddeev-Yakubovsky formalism, the
bound-state wave function of a four-particle system
* is written as a sum of two kinds of components
(Faddeev-Yakubovsky components) A and @,

� ¼
X12
�

 ð~k�;~p�;~q�Þ þ
X6
�

�ð~k�;~��;~s�Þ; [II.1]

where ð~k�;~p�;~q�Þ and ð~k�;~��;~s�Þ are two kinds of
sets of Jacobi momenta for the four-particle system,
and , and O correspond to different choices of these
sets of Jacobi momenta. It is well known that
the Faddeev and the Faddeev-Yakubovsky compo-
nents are rather simple in structure compared with
the total wave functions. This would be a great
advantage of the methods for such a calculation as
the present one, where the different natures of the
different pair interactions together with the strong
binding would bring complex structures into the
wave functions.

In the case of a separable S-wave two-body
potential,

vð~k; ~k0Þ ¼
X
i

�igiðkÞgiðk0Þ 1

4�
; [II.2]

the t-matrix is also an S-wave, and is written as
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tð~k; ~k0; zÞ ¼
X
ij

giðkÞ�ijðzÞgjðk0Þ 1

4�

½��1ðzÞ�ij ¼
1

�i
	ij �

Z 1

0

k2dk
giðkÞgjðkÞ
z� !

2

2

k2
; [II.3]

where z is the two-body energy and 7 is the reduced
mass of the 2-body system. In this case, the Faddeev-
Yakubovsky components are written in the form

 �ð~k�;~p�;~q�Þ ¼ 1

z� T�ðk�; p�; q�Þ
�
X
ij

g�i ðk�Þ��ijðz� T�ðp�; q�ÞÞA�
j ð~p�;~q�; zÞ [II.4]

��ð~k�;~��;~s�Þ ¼ 1

z� T�ðk�; ��; s�Þ
�
X
ij

g�i ðk�Þ��ijðz� T�ð��; s�ÞÞB�
j ð~��;~s�; zÞ; [II.5]

where z is the four-body energy, T�ðk�; p�; q�Þ and
T�ðk�; ��; s�Þ are the four-body kinetic energies
represented by the Jacobi momenta, and T�ðp�; q�Þ
and T�ð��; s�Þ are the spectator kinetic energies.
For a 2D2 system, there are 4 different functions, A,,
and 3 different functions, @O, while for a 3D1 system,
there are 3 different functions, A,, and 2 different
functions, @O. A�

j and B�
j are solved by a set of

coupled integral equations:

A�
j ð~p�;~q�; zÞ ¼

X
j0j00�0

Z
d~q�0

�X��0
jj0 ð~p�;~p�0 ; z� T�ðq�ÞÞ��0

j0j00 ðz� T�
0 ðp�0 ; q�0 ÞÞ

� A�0
j00 ð~p�0 ;~q�0 ; zÞ þ

X
j0j00�0

Z
d~s�0

�X��0
jj0 ð~p�;~��0 ; z� T�ðq�ÞÞ��

0
j0j00 ðz� T�

0 ð��0 ; s�0 ÞÞ
� B�0

j00 ð~��0 ;~s�0 ; zÞ [II.6]

B�
j ð~��;~s�; zÞ ¼

X
j0j00�0

Z
d~q�0

� Y ��0
jj0 ð~��;~p�0 ; z� T�ðs�ÞÞ��0

j0j00 ðz� T�
0 ðp�0 ; q�0 ÞÞ

� A�0
j00 ð~p�0 ;~q�0 ; zÞ; [II.7]

where X��0
jj0 and X��0

jj0 are the [3D1] subsystem ampli-
tudes and Y ��0

jj0 are the [2D2] subsystem amplitudes,
with T�ðq�Þ and T�ð�Þ the spectator kinetic energies
with respect to these subsystems.

We make a separable representation for these
subsystem amplitudes by the energy dependent pole
expansion (EDPE).43) The convergence behavior of
this expansion has been investigated in the bound

states of the cluster of 4 helium atoms,44) and found
to be fast compared with that of the Hilbert-Schmidt
expansion,45) so that retaining only one term for each
subsystem amplitude already achieves a good ap-
proximation. The system of 4 helium atoms was
also treated by the Faddeev-Yakubovsky equation
in configuration space by Filikhin et al. within the
cluster expansion method,46) and their value agreed
with ours by the first two digits. In the present study,
we retained only 1 term of EDPE for each subsystem
amplitude, i.e., the amplitude dominated by the
subsystem ground state pole (EDPA).

For the 2-body potentials, we adopted S-wave
separable potentials with Yamaguchi form factors:

�i ¼ 4

�

!
2

2


si
�i
;

giðkÞ ¼ �2i
k2 þ �2i

; [II.8]

where 7 is the reduced mass of the 2-body system.
For the NN potential we used the rank-2 potentials of
Ikeda and Sato:39)

1S0 ðI ¼ 1Þ: sR ¼ 7:40; �R ¼ 6:157 fm�1;

sA ¼ �2:48; �A ¼ 1:784 fm�1;
3S1 ðI ¼ 0Þ: sR ¼ 7:40; �R ¼ 6:157 fm�1;

sA ¼ �3:26; �A ¼ 1:784 fm�1; [II.9]

where suffixes R and A indicate the repulsive and
attractive terms, respectively.

For the �KN and �K �K potentials we used rank-1
potentials:

�KN: sðI¼0Þ ¼ �1:37; �ðI¼0Þ ¼ 3:9 fm�1;

sðI¼1Þ ¼ 0:29 � sðI¼0Þ; �ðI¼1Þ ¼ �ðI¼0Þ;
�K �K: sðI¼1Þ ¼ 0:38; �ðI¼1Þ ¼ 3:9 fm�1: [II.10]

We call these short-ranged potentials the AMY
(Akaishi-Myint-Yamazaki47)) �KN and �K �K poten-
tials. The range parameter values 3.9 fm!1 are
adopted to represent the exchange of heavy mesons,
like the ; meson.

Among the �K nuclear systems studied in the
present work, the K!K!pp system is particularly an
interesting system because it contains various fea-
tures of interaction: a weakly repulsive interaction
between the two anti-kaons, an interaction between
the two nucleons with long-range attraction and
short-range repulsion, and a short-range strong
attraction between an �K and a nucleon. We found
that, among these, the I F 0 �KN attraction plays
a dominant role to determine the structure of the
ground-state wave function.
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The �KN pair assumes two isospin states: I F 0
and I F 1. To incorporate these multi-state isospin
configurations, we made a simplified treatment; we
calculated the t-matrix in the I F 0 state with the
I F 0 potential and the t-matrix in the I F 1 state
with the I F 1 potential, and averaged these t-
matrices with the weights w F 0.75 and 1 ! w F

0.25, respectively, for the K!K!p, K!pp, K!K!pp
systems, and w F 0.5 and 1 ! w F 0.5 for the K!ppn
system. It is expected that this treatment (“t-
averaging” calculation) takes into account the
strongly attractive I F 0 interaction more properly
than averaging the I F 0 and I F 1 potentials and
obtaining a t-matrix for the �KN system by the
averaged �KN potential (V-averaging calculation).
We followed a similar prescription for the NN
configurations in the K!ppn calculation. The t-
matrix averaging Faddeev and Faddeev-Yakubovsky
calculations have an advantage for systematic
calculations, like the present study, because it is an
easy way to incorporate multi-state pair interactions
when the interaction in one state is very strong and
the interaction in the other states is weak. This effect
will be demonstrated below by comparisons between
the results for the bound state energies obtained by
the t-matrix averaging and by the potential averag-
ing calculations.

From the obtained wave functions we calculated
the density distributions of the pair distances and of
the distances of the anti-kaons and the nucleons from
the center of masses, in the K!K!p, K!pp, K!K!pp
and K!ppn systems. We show the formula for the
density distributions �ðrÞ of the pair distances in the
3-body L F 0 states, where L is the total orbital
angular momentum, in eq. [II.11]. The formulas
for the distance of particles from the c.m. of the
hypernuclei and formulas for the 4-body L F 0 states
were derived by a straightforward extension of this
formula.

1 ¼ h j i
¼ 2

�

Z 1

0

r2dr

Z
d~k

Z
d~k0

Z
d~p

�  ð~k~pÞ ð~k0~pÞ
X
�

2�þ 1

4�
j�ðkrÞj�ðk0rÞP�ðk̂ � k̂0Þ

�
Z 1

0

r2dr�ðrÞ: [II.11]

Here, A is the normalized 3-body wave function,
which is expressed as a sum of 3 Faddeev compo-
nents, while ~k and ~p are the Jacobi momenta. In the
case of the 4-body systems, the wave functions are

represented as a sum of 18 Faddeev-Yakubovsky
components given by three Jacobi momenta. The
multiple integration was made in the Monte Carlo
scheme.

The density distributions are expressed as a sum
of the 6 components, where 6 is the orbital angular
momenta of the pairs or of a particle relative to
the c.m. of the remaining part of the KNC system.
For the ground states of the systems studied in the
present work, it is found that the components with
6 > 0 are negligible, so we retain only the terms with
6 F 0 in the present study.

III. Results and discussion

A. Comparison between t-averaging and
V-averaging procedures. First, let us see the
ground state energies of the K!p, K!K!p, K!pp,
K!ppn, and K!K!pp systems, as listed in Table 1,
where the results obtained by the t-averaging
calculations are compared with those by the V-
averaging calculations.

Here, we can observe that the ground states of
the K!K!p, K!pp, K!K!pp and K!ppn systems gain
appreciable binding when we take the t-averaging
procedure rather than the V-averaging procedure.
This indicates the fact that the strong �KN
attraction in the I F 0 state is well taken into
account in the t-averaging calculations. As a result,
we obtained !51.5MeV for the ground-state energy
of the K!pp system, which is more than a factor of
2 deeper than that we obtain in the V-averaging
case.

In the early 1960’s, just after the discovery of the
$(1405) resonance,48),49) following the prediction of
a K!p quasi-bound state by Dalitz and Tuan,50)

Nogami investigated the possible existence of �KNN
bound states, and claimed that K!pp may exist as a
bound state with a binding energy of B(K!pp) F
11.5MeV.51) Sometimes, this paper is referred to as
the first prediction of the K!pp bound state.52),53)

However, such citations are theoretically inadequate.

Table 1. Comparison of the calculated ground-state energies
between the t-averaging and V-averaging procedures

State t-averaging V-averaging

K!p (I F 0) !26.6MeV !26.6MeV

K!K!p (I F 1/2) !30.4MeV !5.0MeV

K!pp (I F 1/2) !51.5MeV !23.6MeV

K!ppn (I F 0) !69MeV !31MeV

K!K!pp (I F 0) !93MeV !54MeV
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It should be noticed that the B(K!pp) F 11.5MeV
is much less than B(K!p) F 29.9MeV that Nogami
reproduced with his �KN interaction; the K!pp
comes above the $(1405) D p threshold. Thus,
Nogami’s K!pp is not a bound state at all, and its
escape width is estimated to be on the order of
300MeV. Here, we have re-calculated the K!pp
system with Nogami’s �KN interaction using the
same V-averaging treatment, which yielded a K!pp
bound state with B(K!pp) F 60.3MeV. We have
found that this K!pp lies much more deeply than his
state with B(K!pp) F 11.5MeV. (Since his potential
is of long range (two-: range), the V-averaging
value is not so different from the t-averaging one.)
Nogami’s paper fatally missed just this genuine K!pp
ground state. After many years, the first prediction
of K!pp quasi-bound state below the $(1405) D p
threshold was given in 2002 by Yamazaki and
Akaishi.2)

The first prediction of K!pp energy was given to
be !47.7 ! i30.6MeV based on a variational method
of Akaishi54) with the following strongly isospin
dependent �KN interactions;

V I¼0
�KN ðrÞ ¼ ð�595:0� i83:0Þ exp½�ðr=0:66 fmÞ2�MeV;

V I¼1
�KN ðrÞ ¼ ð�175:0� i105:0Þ exp½�ðr=0:66 fmÞ2�MeV:

[III.12]
Here we show V-averaging and t-averaging results for
this realistic K!pp case in order to know the accuracy
of our isospin averaging procedures. The V-averaging
treatment gives an energy of !33.9 ! i29.9MeV,
where higher-order effects of the V I¼0

�KN
strong

attraction are improperly suppressed by the averag-
ing with the V I¼1

�KN
weaker attraction. Most of such

improper suppression can be removed by calculating
separately the I F 0 and I F 1 t-matrices which
incorporate their higher-order effects respectively.
By simulating the isospin average of both the t-
matrices we have obtained the t-averaging energy of
the K!pp to be !45.4 ! i32.4MeV, which becomes
much closer to the original value, !47.7 ! i30.6MeV.
Thus, we can estimate the error of the t-averaging to
be 293MeV for realistic K!pp.

As for the K!K!p system, Kanada-En’yo and
Jido55) made a variational calculation by a Gaussian
expansion method. They obtained a bound state
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Fig. 1. Global view of the calculated bound-state energies EB (in MeV) and sizes RNN (in fm) of �K nuclear clusters, K!p, K!pp, K!ppn
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black broken bars.
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(with the ground state energy !36.0MeV) slightly
below the K!p threshold (!30.6MeV), when the
Akaishi K!p effective potential was employed. We
obtained a similar result, i.e., !30.4MeV for the
ground-state energy of the K!K!p system just below
the K!p threshold !26.6MeV. It is noted that we
could not obtain such a bound state of the K!K!p
system by the V-averaging procedure.

Barnea et al.29) made a hyperspherical harmon-
ics calculation for the K!pp, K!K!pp and K!ppn
systems using the shallow chiral interaction model
with the self-consistent energy dependence taken
into account. They reproduced the ground-state
energies of the K!p and K!pp systems by Doté
et al,28) based on the shallow chiral model, and
obtained the ground-state energies of the K!K!pp
and K!ppn systems around !30MeV. On the other
hand, our calculation, based on the “strong regime”
�KN interaction, leads to very deep ground-state
energies, i.e., !69MeV and !93MeV for the K!ppn
and K!K!pp systems, respectively. In particular, it
should be noted that the addition of one nucleon to
the K!K!p system gains !62MeV, and the addition
of one �K to the K!pp system gains !41MeV to the
ground-state energy. Figure 1 shows a comparison of
the present calculations with the result of a chiral-
based theory of Barnea et al.29) (black broken bars).
Whereas in the latter calculation the K!pp through
K!K!pp levels are shallow and nearly flat (around
!30MeV), our result with the standard strength of
the �KN interaction (sðI¼0Þ

�KN
¼ �1:37) is characterized

by a sudden drop of the K!K!pp energy. This
behavior is more significant with the increase of the
attractive interaction toward sðI¼0Þ

�KN
¼ �1:60.

B. Overview of binding energies and sizes.
The analysis of the DISTO experiment on pp !
p D KD D $ reactions showed a peak structure in
the KD missing mass, "M(KD), and M(p$) invariant
mass spectra, indicating a compact K!pp state
formed with a binding energy of 103MeV.19) The
observed binding energy is much larger than the
theoretical prediction based on the strong �KN
regime, and suggests that in dense nuclear matter,
the �KN interaction may become stronger than in
free space. Thus, it is interesting to systematically
investigate the binding of the �K-nuclear systems,
when the �KN interaction is changed.

Since the structure of �K nuclear states totally
depends on the assumed �KN interaction, we
calculated the ground-state energies and rms nuclear
radii as functions of the interaction strength, sðI¼0Þ

�KN
.

Figure 2 shows the behaviors of the ground state

energies of the K!p, K!K!p, K!pp, K!ppn and
K!K!pp systems when sðI¼0Þ

�KN
is varied, while the ratio

of sðI¼1Þ
�KN

to sðI¼0Þ
�KN

and the other potential parameters
are fixed.

The interaction parameter that we adopt ranges
from the weak chiral regime (sðI¼0Þ

�KN
� �1:2), as given

in many chiral theories,27)–29) and a much stronger
regime of our hypothetical concern (sðI¼0Þ

�KN
� �1:5;

�1:6;�1:7), which may be required to account
for experiments. The standard “PDG” value with
M($*) F 1405MeV/c2 corresponds to

“Standard” : s
ðI¼0Þ
�KN

ðStdÞ ¼ �1:37: [III.13]

In this way, we can overview any theoretical
predictions and the present and future observations.
In Table 2 and Fig. 2 we summarize our results.

It has been well known since the publication of
ref. 1 that the strong attractive �KN interaction
makes the �K bound system shrunk, despite the
strong short-range NN repulsion. Since our calcula-
tion is capable of providing the wave functions, we
calculated the rms radii of the bound nucleons, RKNC,
of each �K nuclear cluster (KNC) from the obtained
nucleon wave function as

Rpoint
KNC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hPnN

i ð~ri �~rGÞ2i
nN

s
; [III.14]

where nN is the number of the nucleons in the KNC
system,~ri is the position of the i-th nucleon,~rG is the
position of the center of mass of the KNC system, and
the bracket h i denotes an expectation value with a
normalized wave function of KNC. In the definition
of Rpoint

KNC , each nucleon is assumed to be a point.
Then, we convoluted the nucleon size from the known
proton radius,24)

rrmsp ¼ 0:88 fm; [III.15]

into RKNC to obtain an rms nuclear radius of

RKNC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRpoint

KNCÞ2 þ ðrrmsp Þ2
q

: [III.16]

The results are also listed in Table 2.
Table 2 presents an overview of calculated

energies and nuclear radii of various �K nuclear
clusters at any input �KN interaction strength. We
can notice the following characteristics:

i) The binding energy increases with jsðI¼0Þ
�KN

j. The
degree of the increase is nearly the same for single- �K
clusters, whereas the degree of the binding energy
increase for K!K!pp is almost twice as large as those
of the single- �K clusters. This large dependence of
the K!K!pp energy on jsðI¼0Þ

�KN
j is understood from the

different roles played by the most important poten-
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tial energy, V ðI¼0Þ
�KN

, whose weight in the energy is 1
for �KN , 3/2 for �K �KN, �KNN and �KNNN , and 3 for
�K �KNN .

ii) The nuclear radii by nucleon distributions
( �K excluded) decrease with jsðI¼0Þ

�KN
j, as initially pre-

dicted from the variational calculations of ref. 1. The
nuclear shrinkage due to the attractive �KN inter-
action is shown here as a general feature of �K nuclear
systems. The very much shrunk K!K!pp system is of
particular importance. However, the behavior of the
nuclear sizes with jsðI¼0Þ

�KN
j is different from that of

the binding energies. The nuclear density seems to be
saturated, where the binding energy still increases.

C. Higher-order effects of increased �KN

attractions. When the �KN attraction is increased,
the potential, kinetic and binding energies of kaonic
nuclear clusters are drastically enlarged, as shown in
Fig. 3(a) for K!p, (b) for K!pp and (c) for K!K!pp.

In the case of the K!p system, (a), only a 15%
increase of the K!p interaction makes the binding
energy of the system 2.24-times as large as that for
the standard strength. Its reason can be understood
as follows. At the standard strength, sðI¼0Þ

�KN
ðStdÞ ¼

�1:37, the binding energy of the K!p system,
26.6MeV, is a result of large cancellation between
the potential energy of !182.9MeV and the kinetic

energy of 156.2MeV. At the 15% strengthened sðI¼0Þ
�KN

interaction the potential energy of the system
changes to !293.6MeV with a 61% enhancement
in the absolute value, where 46 (F 61 ! 15)% comes
from the higher-order effect of the increased �KN
attraction, which gives rise to a shrinkage of the wave
function. This shrinkage also enhances the kinetic
energy from 156.2MeV to 233.9MeV, partly cancel-
ling the enhancement of the potential energy. In sum,
the binding energy of K!p increases more than double
from 26.6MeV to 59.7MeV due to the 15% increase
of the super-strong K!p attractive interaction.

Similar enhancement behaviors are seen for
K!pp, (b) and for K!K!pp, (c). In the case of K!pp
the interaction between K! and the pp core, which
can be derived by a convolution procedure, becomes
of longer range than the original K!p interaction.
Generally, the higher-order effect of long-range
interaction becomes less effective so that in limit
the potential energy of the system is well-estimated in
a Born approximation. This long-range property of
the K!pp interaction explains that the enhancement
factors in the K!pp case are rather damp compared
with those in the K!p case. In the case of K!K!pp,
where the number of K!p interaction is multiplied,
the enhancement factors again rapidly increase

Table 2. Calculated s
ðI¼0Þ
�KN

dependences of the ground-state energies (E in MeV), the nucleon rms distributions for a point nucleon
(Rpoint

KNC in fm), the nucleon rms distributions for a finite-sized nucleon (RKNC in fm), rms N-N distances (RNN in fm) and the effective
densities ;eff/;0 for K!p, K!K!p, K!pp, K!ppn and K!K!pp. The values for the standard strength of the �KN interaction
(sðI¼0Þ

�KN
F !1.37) are shown in gothic letters

K!p K!K!p

s
ðI¼0Þ
�KN

E Rpoint
KNC RKNC E Rpoint

KNC RKNC

!1.2 !8.3 0.75 1.16 !9.1 1.59 1.82

!1.3 !18.0 0.55 1.04 !20.1 1.05 1.37

!1.37 !26.6 0.47 1.00 !30.4 0.84 1.22

!1.4 !30.7 0.44 0.98 !35.4 0.78 1.18

!1.5 !46.2 0.38 0.96 !54.8 0.63 1.08

!1.6 !64.2 0.34 0.94 !78.1 0.54 1.03

!1.7 !84.4 0.31 0.93 !105.1 0.47 1.00

K!pp K!ppn K!K!pp

s
ðI¼0Þ
�KN

E Rpoint
KNC RKNC RNN ;eff/;0 E Rpoint

KNC RKNC RNN ;eff/;0 E Rpoint
KNC RKNC RNN ;eff/;0

!1.2 !23.8 1.06 1.38 1.93 1.48 !42 1.15 1.45 1.89 1.58 !43 0.91 1.27 1.57 2.75

!1.3 !39.0 0.94 1.29 1.73 2.06 !57 1.09 1.40 1.80 1.83 !70 0.82 1.20 1.43 3.64

!1.37 !51.5 0.89 1.25 1.62 2.50 !69 1.06 1.37 1.75 1.99 !93 0.76 1.16 1.35 4.33

!1.4 !57.3 0.86 1.23 1.58 2.70 !74 1.05 1.37 1.73 2.06 !104 0.74 1.15 1.31 4.73

!1.5 !78.3 0.81 1.19 1.48 3.28 !95 1.00 1.33 1.66 2.33 !144 0.69 1.12 1.22 5.86

!1.6 !101.9 0.76 1.16 1.40 3.88 !117 0.97 1.31 1.61 2.55 !190 0.66 1.10 1.09 8.22

!1.7 !127.9 0.72 1.14 1.32 4.63 !142 0.94 1.29 1.56 2.80 !241 0.63 1.08 0.94 12.8
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toward quite a large binding as seen in Fig. 3(c).
Experimental information is awaited especially for
highly compact system, K!K!pp.

D. Density distributions of �K nuclear
clusters. To investigate the feature of these large
bindings and compact sizes, we analyzed the wave
functions obtained in the present calculation. We
show here some remarkable consequences.

1. N-density distributions. Figure 4 (left) shows
the nucleon density distributions, �NðrÞ, where r is

the distance of the nucleon from the center of mass
of (a) K!pp, (b) K!ppn and (c) K!K!pp for various
values of sðI¼0Þ

�KN
F !1.2, !1.3, !1.4, !1.5, !1.6 and

!1.7. The nucleon density distribution in K!pp has a
depression near the center of mass, which arises from
the repulsive interaction between two nucleons at
short NN distances. We note that this depression
disappears by kinematical reason when another N
(K!ppn) or �K (K!K!pp) is added to the �KNN
system.
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Fig. 2. Global view of the calculated bound-state energies (upper) and sizes (lower), RKNC and RNN of �K nuclear clusters as functions of
the �KN interaction strength, sðI¼0Þ

�KN
. The zones of the standard “$(1405) ansatz” and the “Chiral” ansatz are shown by vertical broken

lines. The experimental value of the mass of K!pp as observed by DISTO13) is shown by a horizontal broken line, where a relativistic
correction for the binding energy around 10MeV is not taken into account.
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Figure 4 (right) shows the same distributions
but multiplied by r2 (r2�NðrÞ). From these we can see
that, when the �KN attraction is strengthened, strong
shrinkage occurs due to an increase of the maxima at
around r F 0.5 fm and their inward shifts. Especially,
the trend of the increase of the maxima in K!K!pp
is significant. Besides, from the figure on the left
bottom, we can see a growth of the inner amplitude
(r < 0.2 fm); it remains small for sðI¼0Þ

�KN
F !1.2, !1.3,

!1.4 and !1.5, but then, it drastically increases for
s
ðI¼0Þ
�KN

F !1.6 and !1.7, both in amplitude and in size
of this region, showing a growth of a nuclear high-
density region in the center of this double- �K nuclear
system.

2. NN distance distributions and effective density.
Figure 5 (left) shows the probability density distri-
butions of the N-N distance �NNðrÞ in (a) K!pp (b)
K!ppn and (c) K!K!pp for sðI¼0Þ

�KN
F !1.2, !1.3, !1.4,

!1.5, !1.6, and !1.7, where r is the N-N distance.

We can see that in K!pp and K!ppn �NNðrÞ has a
nodal behavior at around r F 0.2 fm, and has an inner
amplitude at r < 0.2 fm. This nodal behavior arises
from the rank-2 nature of the NN potential. In
K!K!pp, this inner amplitude becomes significantly
enhanced. The three figures on the right of Fig. 5
show the same distribution, but multiplied by r 2,
r2�NNðrÞ, which is normalized as

R1
0 dr r2�NNðrÞ ¼ 1.

From these figures, we can see that while the inner
amplitude remains small when the �KN interaction is
strengthened in K!pp and K!ppn, it becomes much
enhanced, and the size of this region also increases
(up to around r F 0.5 fm for sðI¼0Þ

�KN
¼ �1:6 and �1:7)

in K!K!pp. This indicates the fact that addition of
one anti-kaon to K!pp leads to a situation in which
two nucleons can get very close to each other in spite
of the strong inner repulsion of the NN interaction.

The 1S0 NN potential of Ikeda and Sato,39) which
we employed in our K!K!pp calculation, reproduces
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Fig. 3. Illustration of the energy values of binding (B.E.), potential (P.E.) and kinetic (K.E.) energies (left) and their enhancements
(right) as functions of the interaction strength f ¼ s
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=s
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ðStdÞ, indicating enormous higher-order effects of wave function
shrinkage caused by the increase of �KN attraction.
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the experimental 1S0 phase shift up to Elab F

300MeV. This means that the NN interaction is
probed up to around r F 0.5 fm by this potential
model. Though the validity of this NN potential
for r < 0.5 fm is not supported, it can be a general
argument that the relative motion of two nucleons
in the point nucleon model has a non-zero amplitude
at r < 0.5 fm. The present calculation shows that,

if there is non-zero amplitude at r < 0.5 fm, even
if it is small, the inner amplitude can grow by
coupling to the short-ranged �KN attraction. If there
are two anti-kaons present, the two-fold attraction
mechanism leads to a significant growth of this inner
amplitude in magnitude and in range, when the �KN
interaction is strengthened.
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We calculated the mean N-N distances for K!pp,
K!ppn and K!K!pp,

RNN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

r4�NNðrÞdr
s

; [III.17]

for various values of sðI¼0Þ
�KN

, as shown in Table 2.
Using the known NN distance,6),56)

R
ðordÞ
NN ¼ 2:2 fm; [III.18]

for the ordinary nuclear density of ;0 F 0.17 fm!3,
we could calculate the ratio, which can be called the
“effective nuclear density” of KNC, as follows:

�ðeffÞ ¼ R
ðordÞ
NN

RNN

" #3

�0: [III.19]

These values are presented in Table 2. For instance,
;(eff) F 2.5;0 in K!pp, and ;(eff) F 4.3;0 in K!K!pp at

the standard �KN interaction. The ;(eff) increases
with jsðI¼0Þ

�KN
j.

3. �K- �K distance distributions. To investigate the
effect of the repulsion between two �K’s, we show in
Fig. 6 the probability density distribution of the �K �K
distance �K�K�ðrÞ (left) and r2�K�K�ðrÞ (right) in
K!K!p (upper) and K!K!pp (lower). We note that
the �K �KN system has an appreciable amplitude for
those configurations where the two anti-kaons are
very near to each other, already for lower values of
jsðI¼0Þ

�KN
j. By the addition of one nucleon, this inner

amplitude grows significantly, and the two �K’s
become much closer to each other. Further, the
inner amplitude increases drastically when jsðI¼0Þ

�KN
j is

increased. These features strongly indicate that the
effect of the repulsion between the two anti-kaons
against the bindings of the �K nuclear systems is
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not important. This is against the prevailing belief
that because of the �K- �K repulsion no formation of
dense �K nuclear matter is possible, but is consistent
with a dynamical mechanism for reducing the �K- �K
repulsion due to the �KN formation.19),20)

4. $*-$* distance distributions in �K �KNN.
Because one K! and one proton form a compact
system ($*), K!K!pp is an important system to
study the relative motion of two $* particles.
Figure 7 shows the probability density distribution
of the distance between the centers of mass of two $*
clusters in K!K!pp, when sðI¼0Þ

�KN
is varied from !1.2

to !1.7. It is interesting that as the attraction
between K! and p becomes stronger, the maximum
of the distribution seems to converge to a distance
of around 0.7 fm. In addition, there seems to grow
an inner bump in the distribution at r 5 0.3 fm,
particularly for sðI¼0Þ

�KN
F !1.6 and !1.7. Combined

with the strongly enhanced NN inner amplitude for
these sðI¼0Þ

�KN
values, this indicates the possibility of the

growth of a very high-density configuration in the
center of this double K! nucleus, where all of the two
�K’s and two protons become very near to each other.

IV. Relativistic effect on �K binding

The calculations so far made are based on a
non-relativistic (NR) treatment of few-body systems.
For the very deeply bound �K, however, relativistic
corrections are indispensable.57) The relativistic effect
can be taken into account by using the Klein-Gordon
(KG) equation for K!,

� !
2

2mK

~r2 þ Uopt

� �
j�i ¼ "KG þ "2KG

2mKc2

� �
j�i;

Uopt ¼ Us þ Uv þ U2
s � U2

v þ "KGUv

2mKc2
; [IV.20]

where CKG is the rest-mass-subtracted energy of K!,
and Us (Uv) is a scalar (vector) mean-field potential
for K! from the shrunk nuclear core. Detailed
realistic calculations of Uopt are in progress.

If we obtain from few-body NR calculations the
lowest energy, CS, of the Schrödinger equation with
the same optical potential, Uopt,

� !
2

2mK

~r2 þ U opt

� �
j�i ¼ "Sj�i; [IV.21]

the KG energy is calculated by the relation,

"KG ¼ mKc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2"S

mKc2

r
� 1

� �
: [IV.22]

Obviously, this relation means that, when the NR
energy, CS, drops down to !mKc2/2, the relativistic
energy, CKG, becomes !mKc2, namely, the total mass
of K! becomes zero (“kaon condensation regime”), as
shown in Fig. 8. This relativistic effect would become
particularly large in the case of K!K!pp, where the
core nucleus is strongly shrunk with a highly excited
internal energy and, therefore, |CS| is much bigger
than the value naively estimated from B(K!K!pp)
denoted in Fig. 2.

Roughly speaking, the relativistic correction
for CS 9 100MeV is: "CKG F CKG ! CS : !10MeV.
The relativistic correction for K!K!pp becomes very
large, when the chiral symmetry restoration effect is
taken into account.

V. Effect of chiral symmetry restoration
in �K nuclear systems

The binding energy of K!pp, BK F 103MeV, as
observed in the DISTO experiment,13) turned out to
be much larger than the original predicted value
(48MeV,2) 51.5MeV in the present work) based on
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Fig. 7. Probability distribution of the distance between the centers of mass of two $* clusters in K!K!pp, when sðI¼0Þ
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to !1.7.
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the standard $(1405) ansatz. This infers that the
I F 0 �KN interaction is effectively enhanced by
about 25% for some reasons.7) We examined the
problem of the interaction ranges in the adopted
NN and �KN interactions, and found that possible
changes of the ranges that are consistent with the
mass and width of $(1405) cannot account for the
large binding energy. Thus, the present standard
value of the �KN interaction that corresponds to
BK F 27MeV of $(1405) is rather robust; it cannot
be increased by 25%. It is thus plausible to
investigate the problem as to “how the �KN inter-
action changes in the nuclear medium”. The rela-
tivistic correction in KNC is substantial as we have
seen in the preceding Section IV, but for BK F

103MeV, it is about 10% effect, and thus it is not the
main cause.

We now consider possible in-medium effects on
chiral-symmetry breaking and restoration that occur
spontaneously in the meson-nucleon interactions.58)

Both the T-matrices of the s-wave :N and �KN
interactions of Nambu-Goldstone bosons are ex-
pressed in relation to the pion and kaon decay
constants, f: and fK, respectively, through the
Weinberg–Tomozawa theorem,59),60)

T
ðI¼3=2Þ
�N ¼ !�

f2�
; [V.23]

T
ðI¼0Þ
�KN

¼ � !K
f2K

; [V.24]

where the T matrices are inversely proportional to f2�
and f2K . They are further related to the current quark
masses, ðmu;md;msÞ, and quark condensates in the
QCD vacuum, according to the Gell-Mann–Oakes–
Renner (GOR) relation,61)

m2
�f

2
� ¼ �4mqh0j�qqj0i; [V.25]

m2
Kf

2
K ¼ �ðmq þmsÞ

� ½h0j�qqj0i þ h0j�ssj0i�; [V.26]

where mq F (mu D md)/2, and h0j�qqj0i ¼ h0jð�uuþ
�ddÞ=2j0i is a ðu; dÞ quark condensate in free space.
The quark condensate is the order parameter of the
QCD vacuum,58) and they are subject to changes in
the nuclear medium62)–65) as h0j�qqj0ifree ! h0j�qqj0i�
in the case of :N and ½h0j�qqj0ifree þ h0j�ssj0ifree� !
½h0j�qqj0i� þ h0j�ssj0i�� in the case of �KN . Our concern
is only on the qualitative change of the T matrices,
and we expect the following enhancement factors at
a nuclear density of ;. For the case of :N, the ratio
of the s-wave isovector interaction with a potential
parameter b1 is given by

F�Nð�Þ ¼ b�1
bfree1

¼ jh0j�qqj0ifreej
jh0j�qqj0i�j

� 1

1� ��
; [V.27]

with , as a parameter. Such an enhancement was
observed in deeply bound pionic states,30)–32) where
the parameter , was deduced to be ð0:36� 0:08Þ �
��1
0 with ;0 F 0.17 fm!3 being the normal nuclear

density. This value is in good agreement with
theoretical predictions.66)

In the �KN sector the enhancement of the �KN
interaction is given by

F �KNð�Þ ¼
T��KN
T free

�KN

¼ jh0j�qqj0ifree þ h0j�ssj0ifreej
jh0j�qqj0i� þ h0j�ssj0i�j

; [V.28]

where the h0j�ssj0ifree is known to be around
0:8h0j�qqj0ifree.67) A similar decrease of the quark
condensates, thus, increase of the attractive �KN
interaction, is expected. Here, we can foresee that its
effect should be much more spectacular compared
with the :N case, since the strongly attractive �KN
interaction tends to induce tremendous higher-order
effects, in contrast to the case of the :N interaction of
repulsive character. The most important effect in the
�KN case is substantial nuclear shrinkage caused by
the strongly attractive force, as we have considered
in the preceding section. So far, no such effect has
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Fig. 8. Comparison between the Klein-Gordon energy, CKG, and
the Schrödinger energy, CS. The relativistic correction,
"CRC F CKG ! CS, is shown by a broken curve. As CS ! !mKc2/
2, CKG becomes !mKc2 (Kaon condensation).
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been taken into account in terms of the modification
of the �KN interaction.

In the present note we attempt to understand
this effect qualitatively by applying the concept of
“clearing of QCD vacuum” introduced by Brown,
Kubodera and Rho.68) This model states that the
QCD vacuum expressed by the quark condensate is
reduced by the amount of clearing of the QCD vac-
uum by the presence of nucleons. We extend the BKR
model to �K nuclear bound systems (with a nucleon
number n), postulating the following enhancement
factors for the :N and �KN cases, respectively:

F�N ¼ jh0j�qqj0i0j
jh0j�qqj0i�j

� 1

1� �
; [V.29]

F �KN ¼ jh0j�qqj0i0j
jh0j�qqj0i�j

� 1

1� 0:5�
[V.30]

with a “QCD vacuum clearing” factor of +, which is
given by the ratio of the volume of the nucleon (vN)
that clears the QCD vacuum to the nuclear volume
(Vnucl) as

� ¼ n � vN
Vnucl

: [V.31]

We take an “rms volume” for vN ,

vN ¼ 4�

3
r3N ¼ 2:85 ½fm3�; [V.32]

corresponding to an rms nucleon radius of rN F

0.88 fm,24) since it represents a dense region of the
nucleon that is expected to clear the volume of the
QCD vacuum. In the case of the �KN case, the
denominator in eq. [V.30] is approximated to 1 !

0.5+, since the chiral restoration effect dominates the
h0j�qqj0i term in eq. [V.28], so that h0j�ssj0i� is close to
h0j�ssj0ifree.63)

In the case of a normal nucleus having a mass
number A and a nuclear radius of RA F 1.2 # A1/3

fm at the standard nuclear density ;0 F 0.17 fm!3,
the nuclear volume is

Vnucl ¼ 7:24� A ½fm3�: [V.33]

Thus,

� � 0:34
�

�0
; [V.34]

which gives good agreement with the observation of
F�Nð�Þ in the deeply bound pionic case, eq. [V.27].

In the case of �K clusters, how to define Vnucl

is not obvious. Since few-body �KN clusters do
not provide a homogeneous medium, we evaluated
Vnucl from VKNC using the realistic wave functions.

Figure 9 shows the nucleon distributions �NðrÞ and
4�r2�NðrÞ for K!pp and K!K!pp both for point and
finite-size nucleons in a schematical figure. We can
define an effective radius, Reff, for “80% volume” asZ Reff

0

r2�finiteN ðrÞdr ¼ n� 0:80: [V.35]

The effective nuclear volume is

Veff ¼ 4�

3
R3

eff ; [V.36]

which yields � �KN ¼ n � vN=Veff , as shown in Table 3.
Using these values we can obtain enhancement
factors for the �KN interactions, F �KN , which lead to
enhanced interaction strengths, sð1stÞ�KN

, with the same
non-dimensional unit as s �KN , where the suffix (1st)
means the first iteration of such renormalization.

Let us take K!pp as an example. As the first
step, we take sðI¼0Þ

�KN
F !1.37 so as to be consistent

with the assumed binding energy of 27MeV of K!p
identified as $(1405). The BKR procedure gives a
renormalized interaction parameter, enhanced by a
factor of 1.24. This in turn gives a renormalized
interaction strength: sðI¼0Þ

�KN
F !1.37 # 1.24 F !1.69.

It is known that the experimental binding energy of
K!pp, 103MeV, obtained from the DISTO experi-
ment,13) is about a factor of 2 larger than the original
few-body predictions taking into account the NN
repulsion appropriately, 53MeV,2) 55–70MeV,37)

76MeV,39) and 51.5MeV (present). This discrepancy,
as shown in Fig. 2, can now be explained by an
increase of the �KN interactions due to chiral
symmetry restoration.

Unfortunately, there is only one empirical data
that we can take into account with confidence.
We look forward to more experimental data to be
produced in the near future.

VI. Concluding remarks

We have made a comprehensive systematic
study for the kaonic nuclear systems K!p, K!K!p,
K!pp, K!ppn and K!K!pp by employing separable
potential models for the NN, �KN and �K �K inter-
actions. Our calculations based on the PDG inter-
pretation of $(1405) show deep bindings of K!pp,
K!ppn and K!K!pp in contrast to the weak binding
results based on the chiral SU(3) dynamics model of
the �KN interaction.

To globally view the deep nuclear binding and
strong shrinkage induced by the short-ranged strong
�KN interaction, we created a reference diagram of
the binding enegies of these kaonic nuclear systems
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with respect to the strength of the �KN attraction,
and calculated the probability density distributions
of the nucleons and the relative distance of the two
nucleons from the obtained wave function. Besides
the increase in binding energies with the increase in
the �KN attraction, there appears to be a consid-
erable shrinkage behavior of the size of the nucleonic
motion in these �K nuclear systems, as can be seen
from Fig 4. A main shrinkage occurs by inward shifts
of the maxima in r2�ðrÞ at around 0.5 fm and of the
tail parts (r > 1 fm).

Especially, we can see a notable shrinkage in
K!K!pp, where the “super-strong nuclear force”
mediated by an anti-kaon between two nucleons6),7)

works twofold, in a simple counting, compared with
K!pp. The repulsive force between the two anti-
kaons is not effective to prevent this double
attraction mechanism (see also refs. 19), 20)). Sur-
prisingly, as shown in Fig. 5(c), the NN relative wave
function reveals an appreciable inner amplitude at
very short NN distances (rNN < 0.5 fm, inside of the
size of the nucleons themselves), whereas K!pp and

Table 3. Effect of chiral symmetry restoration in K!pp, K!ppn and K!K!pp. Reff is the radius corresponding to 80% volume of each
KNC: Veff [fm3]. � �KN F QCD-vacuum clearing factor. F �KN F enhancement factor of the �KN interaction. sð1stÞ�KN

F renormalized
interaction strength after the 1st iteration

K!pp K!ppn K!K!pp

s �KN Reff Veff � �KN F �KN s
ð1stÞ
�KN

Reff Veff � �KN F �KN s
ð1stÞ
�KN

Reff Veff � �KN F �KN s
ð1stÞ
�KN

!1.2 1.68 19.8 0.29 1.17 !1.40 1.77 23.1 0.37 1.23 !1.47 1.55 15.6 0.37 1.22 !1.47

!1.3 1.58 16.5 0.35 1.21 !1.57 1.71 21.0 0.41 1.26 !1.63 1.47 13.4 0.43 1.27 !1.65

!1.37 1.53 15.0 0.38 1.24 !1.69 1.68 19.9 0.43 1.27 !1.75 1.43 12.3 0.46 1.30 !1.78

!1.4 1.51 14.5 0.39 1.25 !1.74 1.67 19.6 0.44 1.28 !1.79 1.42 11.9 0.48 1.31 !1.84

!1.5 1.46 13.1 0.43 1.28 !1.92 1.63 18.3 0.47 1.31 !1.96 1.38 11.0 0.52 1.35 !2.02

!1.6 1.43 12.2 0.47 1.31 !2.09 1.61 17.4 0.49 1.33 !2.12 1.35 10.4 0.55 1.38 !2.21

!1.7 1.40 11.4 0.50 1.33 !2.26 1.58 16.6 0.52 1.35 !2.29 1.34 10.0 0.57 1.40 !2.38

K pp and K K pp 
 point-nucleon distribution  finite-nucleon distribution

- - -
(a) K pp and K K pp 

- - -
(b)

4πr4πr ρ
N (r )2 [ fm   ]-1
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K!ppn show only small amplitudes (Fig. 5(a,b)). Our
calculation indicates that this inner amplitude in the
K!K!pp system grows appreciably when we take
around sðI¼0Þ

KN F !1.5 or stronger values. This behav-
ior of the enhanced NN inner amplitudes suggests
that the short-ranged attraction due to the exchange
of ; meson, which is taken into account in the range
of our �KN interaction as the underlying process of
the Weinberg–Tomozawa term, sensitively couples
to the two nucleons when located almost next to each
other, thus generating the growth of extremely high-
density nuclear configurations in the central region of
the �K �K nuclear systems.

In analyzing the DISTO experiment, a compact
K!pp state is obtained, the binding energy of
which is much deeper than the original theoretical
predictions. To clarify this situation, we conducted
an analysis on the effect of the partial restoration of
chiral symmetry on the �KN interaction on the basis
of the “clearing QCD vacuum” model of Brown,
Kubodera and Rho.68) In this analysis, we calculated
the QCD vacuum clearing factor, +, from the
obtained nucleon density distributions. Our analysis
shows that the compact K!pp state indicated from
the DISTO experiment is consistent with the
strengthening of the �KN interaction due to the
partial restoration of the chiral symmetry. Our
analysis further suggests an even stronger �KN
interaction in the K!K!pp system, i.e., a very
compact K!K!pp state. This could thus be a possible
mechanism to generate extremely high density, and
requires further theoretical studies. For a systematic
understanding of the chiral symmetry restoration in
dense nuclear matter, we strongly encourage efforts
to conduct experimental searches for kaonic nuclear
bound systems including K!K!pp, in addition to
K!pp.69)–72)
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