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Abstract: After reviewing the standard hypothesis test and the matched filter technique to
identify gravitational waves under Gaussian noises, we introduce two methods to deal with non-
Gaussian stationary noises. We formulate the likelihood ratio function under weakly non-Gaussian
noises through the Edgeworth expansion and strongly non-Gaussian noises in terms of a new
method we call Gaussian mapping where the observed marginal distribution and the two-body
correlation function are fully taken into account. We then apply these two approaches to Student’s
t-distribution which has a larger tails than Gaussian. It is shown that while both methods work well
in the case the non-Gaussianity is small, only the latter method works well for highly non-Gaussian
case.
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1. Introduction

The large-scale cryogenic gravitational wave
telescope (LCGT) now known as KAGRA started
its construction in 2010 in deep underground at
Kamioka mine. Recently its tunnel excavation, which
started in early 2012,1) was successfully completed,2)

and the installation of a laser interferometer3) has
started toward the first direct detection of gravita-
tional waves (GWs) in competition or cooperation
with the advanced LIGO4) and the advanced Virgo5)

detectors one century after Einstein proposed general
relativity and predicted gravitational waves which
propagate with the speed of light.

Among the four known elementary interactions
in nature, gravity is by far the weakest force. Its
high penetrating power would convey informations
on deep inside celestial bodies and the very early
Universe. On the other hand, this same property

also makes it very difficult to catch the signal. This
is why no one has ever succeeded in direct detection
of gravitational waves. Indeed it is a problem to
extract a tiny signal out of much larger detector
noise, and it is attempted by using a matched filter of
expected signals. If detector noise is distributed
Gaussian, we have a fairly straight forward technique
as reviewed in the next section. However, the actual
noises are known to be highly non-Gaussian. There-
fore we must invent appropriate methods to deal
with these non-Gaussianity so that we would not
miss the signal.

In this article, first we present a mini review of
signal detection under Gaussian noise, and then
introduce two methods toward detection of gravita-
tional waves under non-Gaussian noises to prepare
for the forthcoming KAGRA. So far several papers
have been written to deal with non-Gaussian noises
for GW observations.6)–10) However, they are mostly
based on some specific non-Gaussian distributions
such as double Gaussian, exponential,6) @2, and
Student’s t-distributions.8) Here we try to be as
model independent as possible, since we do not know
the actual noise distribution a priori.

The rest of the paper is organized as follows.
After a short review on signal detection under
Gaussian noise in §2, in §3 we incorporate small
deviation from Gaussian distribution in terms of the

*1 Research Center for the Early Universe (RESCEU),
Graduate School of Science, The University of Tokyo, Tokyo,
Japan.

*2 Kavli Institute for the Physics and Mathematics of the
Universe (Kavli IPMU), TODIAS, WPI, The University of Tokyo,
Kashiwa, Chiba, Japan.

† Correspondence should be addressed: J. Yokoyama,
Research Center for the Early Universe (RESCEU), Graduate
School of Science, The University of Tokyo, 113-0033, Japan
(e-mail: yokoyama@resceu.s.u-tokyo.ac.jp).

Proc. Jpn. Acad., Ser. B 90 (2014) [Vol. 90,422

doi: 10.2183/pjab.90.422
©2014 The Japan Academy

http://dx.doi.org/10.2183/pjab.90.422


Edgeworth expansion and calculate the likelihood
ratio with it. In §4 the case with strong non-Gaussian
noise is handled by a new method called Gaussian
mapping, and the likelihood ratio test is formulated
with arbitrary non-Gaussian marginal distribution.
Then in §5 we apply the results of §§3 and 4 to a non-
Gaussian distribution called Student’s t-distribution
which is a symmetric distribution with a larger
tail than the corresponding Gaussian distribution.
Finally §6 is devoted to conclusion.

2. Signal detection

Here we first present a minimal review on signal
detection and describe optimal statistics and filter
under Gaussian noise.*

2.1. Hypothesis testing. We first consider a
hypothesis test using a time sequence of a detector
output x(t) and a GW signal (if any) h(t). There are
two distinct cases with and without nonvanishing
signals h(t). The former is expressed as H1 or simply
by 1 when we measure the sum x(t) F n(t) D h(t) as
the output, and the latter by H0 or 0 measuring only
noises x(t) F n(t).

There are two kinds of errors associated with
hypothesis testing. One is the false alarm (FA)
claiming detection without actual signals, whose
probability is given in terms of the conditional
probability PFA FP(1|0). The other is false dismissal
(FD) missing detection even if signal is there, given
by the probability PFD FP(0|1). We wish to max-
imize the detection probability under a fixed FA
probability or significance level.

An extremely useful theorem (although called
lemma) is Neyman-Pearson’s Lemma.15) Using the
likelihood ratio $(x),

�ðxÞ � P ð1j0Þ
P ð0j1Þ ; ½1�

we define a test such that

reject null hypothesis H0 if �ðxÞ > k

adopt null hypothesis H0 if �ðxÞ � k

where k satisfies

P ð�ðxÞ > kj0Þ ¼ �:

Then the lemma states that this is the most powerful
test at the significance level ,. In other words, this
test gives the largest detection rate under a fixed false
alarm rate ,. If there is a free fitting parameter, one

must first fix it by maximizing $(x) before applying
the test.

This lemma shows the importance of the like-
lihood ratio or the noise distribution function.

2.2. Signal detection under Gaussian noise.
Here we consider the case with random Gaussian
noise. Discretizing the time sequence as x(ti) 2 xi the
likelihood ratio reads

�ðxÞ ¼ exp

�
� 1

2
ðxi � hiÞðK�1Þijðxj � hjÞ

þ 1

2
xiðK�1Þijxj

�
¼ exp qixi � 1

2
hiqi

� �
½2�

where Kij F hninji is the noise covariance matrix or
the two-time correlation function, and qi 2 (K!1)ijhj
or hi FKijqj. Here and throughout, summation over
repeated indices in the same term is assumed. In the
continuum limit, we find

hnðtÞnðt0Þi � Kðt; t0Þ and hðtÞ ¼
Z
Kðt; t0Þqðt0Þdt0: ½3�

Thus the log-likelihood ratio

ln �ðxÞ ¼
Z
qðtÞxðtÞdt� 1

2

Z
qðtÞhðtÞdt ½4�

can be maximized if a linear correlator

G �
Z
qðtÞxðtÞdt ½5�

is maximized. This is the linear matched filter for a
known wave form h(t).

Let us summarize some properties of this
matched filter. The expectation value without any
signal is simply equal to zero, E0{G} F 0, whereas
that with signal h(t) reads

E1fGg ¼
Z
qðtÞhðtÞdt: ½6�

The variance is given by

VarfGg ¼
Z
qðtÞhðtÞdt ½7�

irrespective of whether signal exists or not. We thus
find the signal-to-noise (SN) ratio

S

N
¼ E1fGgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarfGgp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
qðtÞhðtÞdt

s
: ½8�

From this result we deduce that when the linear
matched filter is maximized, the S/N ratio is also
maximized for Gaussian noises.

* Standard references for this section include (Refs. 11, 12,
13, 14).
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2.3. Frequency domain. It is often useful to
work in the Fourier space with frequency f rather
than dealing time sequence directly. Assuming sta-
tionary noise, its correlation function has time
translational invariance, and we find

hnðtÞnðt0Þi ¼ Kðt� t0Þ
¼ 1

2

Z 1

�1
Snðjf jÞe�2�ifðt�t0Þdf; ½9�

where Sn(|f|) F 2Sn(f ) is the one-sided power spec-
trum of noise. From

hðtÞ ¼
Z

~hðfÞe�2�iftdf

¼
Z
Kðt� t0Þqðt0Þdt0

¼ 1

2

Z
Snðjf jÞ~qðfÞe�2�ifðt�t0Þdf ½10�

we find

~qðfÞ ¼ 2~hðfÞ
Snðjf jÞ : ½11�

We therefore obtain

G ¼
Z
qðtÞxðtÞdt ¼

Z
2~hðfÞ~x�ðfÞ
Snðjf jÞ df; ½12�

and the log-likelihood ratio

ln �ðxÞ ¼
Z

2 ~hðfÞ~x�ðfÞ
Snðjf jÞ df

� 1

2

Z
2 ~hðfÞ~h�ðfÞ
Snðjf jÞ df; ½13�

for Gaussian noise.
2.4. Optimal filter. One can consider the

question which filterF(t) is optimal, or maximizes the
S/N ratio. Defining

GF �
Z
F ðtÞxðtÞdt ¼

Z
~F ðfÞ~x�ðfÞdf;

we find the expectation value in the presence of a
signal and the dispersion ofGF are respectively given
by

E1fGFg ¼
Z

~F ðfÞ~h�ðfÞdf;

VarfGFg ¼ 1

2

Z
Snðjf jÞ ~F ðfÞ ~F �ðfÞdf: ½14�

If we define an inner product by

½~aðfÞ; ~bðfÞ� � 1

2

Z
SnðjfjÞ~aðfÞ~b�ðfÞdf;

[14] is expressed as

E1fGFg ¼ ~F ðfÞ; 2
~hðfÞ

Snðjf jÞ

" #
;

VarfGFg ¼ ½ ~F ðfÞ; ~F ðfÞ�;
so that the S/N ratio is expressed as

S

N

� �2

¼

�
~F ðfÞ; 2

~hðfÞ
Snðjf jÞ

�2
½ ~F ðfÞ; ~F ðfÞ� : ½15�

This shows that the S/N ratio is maximized when
~F ðfÞ ¼ 2~hðfÞ=SnðjfjÞ. That is, the linear matched
filter [12] used in the Gaussian likelihood function
[13] maximizes the S/N ratio.

Note, however, that the above property holds if
and only if noise distribution is Gaussian. For generic
non-Gaussian distributions, there is no reason that
the linear matched filter [12] is optimal. We should
instead consider some non-linear filters in general.
In the next two sections, instead, we consider the
likelihood ratio test under non-Gaussian noises
directly.

2.5. Locally optimal statistic. Before proceed-
ing, however, we define a locally optimal statistic.16)

In the actual detection of GWs, the wave form has a
number of undetermined parameters. As mentioned
above, we maximize the likelihood function over
these parameters. Among these undetermined pa-
rameter is an overall amplitude of GWs, C, which
depends on the distance to the source. Let us consider
the case it is the only remaining parameter,
quantifying N discrete sequence of the data as
xi ¼ ni þ �ĥi with

PN
i¼1 jĥij2 ¼ 1.

Then the likelihood ratio depends on C as
$(x;C) FP(x|C)/P(x|0). If the amplitude was large
enough we could detect GW without any sophisti-
cated statistical treatments, so what matters as a
likelihood test is the case C is very small. We may
therefore expand the likelihood ratio with respect to
C as

�ðx; �Þ ¼ 1þ ��1ðxÞ þ �2

2
�2ðxÞ þ . . .

The locally optimal statistic is defined by the first-
order coefficient

�1ðxÞ ¼ 1

P ðxj0Þ
d

d�
P ðxj�Þ

����
�¼0

¼ d

d�
ln �ðx; �Þ

����
�¼0

; ½16�

and it controls the entire likelihood ratio in case GW
amplitude is small.
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3. Signal detection under weakly non-Gaussian
noise distribution

Since Gaussian noise is fully characterized by the
covariance matrix or the two-body correlation
function, any nonvanishing higher-order cumulants
or reduced correlation functions are signatures of
non-Gaussianity of the probability distribution func-
tion (PDF), P(x). We incorporate effects of these
nonvanishing higher-order cumulants to PDF and
likelihood function to find the locally optimal
statistics. The Edgeworth expansion17) provides such
a framework to incorporate them around the normal
distribution, ’ðyÞ � e�y

2=2=
ffiffiffiffiffiffi
2�

p
, in relation with

the central limit theorem. Here and hereafter, the
variable y (as well as yi or yp introduced later)
denotes a normalized quantity with a vanishing
mean and a unit variance such as y 2 x/<x with
�x �

ffiffiffiffiffiffiffiffiffihx2ip
.

First we expand P(y) in terms of H(y) and its
derivative as

P ðyÞ ¼
X1
r¼0

cr
r!
’ðrÞðyÞ

¼
X1
r¼0

cr
r!
ð�ÞrHrðyÞ’ðyÞ ½17�

where the second equality follows from the definition
of the Hermite polynomial. From its orthonormality,
the coefficients are given by

cr ¼ ð�Þr
Z 1

�1
HrðyÞP ðyÞdy: ½18�

Using

H0ðyÞ ¼ 1; H1ðyÞ ¼ y; H2ðyÞ ¼ y2 � 1;

H3ðyÞ ¼ y3 � 3y; H4ðyÞ ¼ y4 � 6y2 þ 3; . . . ½19�
we find

c0 ¼ 1; c1 ¼ 0; c2 ¼ 0;

c3 ¼ �hy3i; c4 ¼ hy4i � 3; . . . : ½20�
Now let us consider a random variable 9 which

is a sum of ~N statistically independent variables
with the same mean h9ji Fm1 and the variance
hð�j �m1Þ2i ¼ �21 ðj ¼ 1; 2; . . . ~NÞ as

� ¼ �1 þ �2 þ . . .þ � ~N:

The central limit theorem asserts that the PDF,P(y),
of a variable y F (9 !m)/<, where m F h9i and
�2 ¼ hð� �mÞ2i ¼ ~N�21 are the mean and the var-
iance of 9, approaches the normal distribution as ~N
increases.

We can relate the characteristic function for the
PDF P(y), *(z), with that of one component PDF,
P1(yi) with yi 2 (9i !m1)/<1 as

�ðzÞ �
Z 1

�1
eizyP ðyÞdy ¼ heiz��m� i

¼ exp iz
X~N
j¼1

�j �m1ffiffiffiffiffi
~N

p
�1

" #* +

¼ �1
zffiffiffiffiffi
~N

p !" # ~N

; ½21�

where *1(z) is the characteristic function of P1(yi).
Now we define the following expansion

e
z2

2 �ðzÞ ¼
Z 1

�1
e
z2

2þizyP ðyÞdy �
X1
m¼0

~cm
m!

ð�izÞm ½22�

and compare with [17]. Then using the identity,Z
eizy’ðmÞðyÞdy ¼ ð�izÞme�z2

2 ; ½23�

as well as the following relation between the
characteristic function and the generating function,
)1, of y1’s cumulant 6m,

�1ðzÞ ¼ e�1ðzÞ; �1ðzÞ ¼
X1
m¼0

�m
m!

zm; ½24�

we find

e
z2

2 �ðzÞ ¼
X1
m¼0

cm
m!

ð�izÞm

¼ exp ~N
X1
j¼3

�j
j!

izffiffiffiffiffi
~N

p !j" #

¼
X1
‘¼0

~N‘

‘!

X1
j¼3

�j
j!

izffiffiffiffiffi
~N

p !j" #‘
: ½25�

Then the j-th coefficient can be expressed by j-th
and lower-order normalized cumulants and inverse
powers of ~N; for example,

c3 ¼ � �3ffiffiffiffiffi
~N

p ; c4 ¼ �4
~N
;

c5 ¼ � �5
~N3=2

; c6 ¼ �6
~N2

þ 10
�23
~N
; . . . ½26�

The Edgeworth expansion is obtained by rear-
ranging these coefficients in powers of ~N�1=2 as

P ðyÞ ¼ ’ðyÞ � �3
3!
’ð3ÞðyÞ þ �4

4!
’ð4ÞðyÞ

þ 10�23
6!

’ð6ÞðyÞ þ . . . ; ½27�
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or equivalently,

P ðyÞ ¼
�
1þ �3

3!
H3ðyÞ þ �4

4!
H4ðyÞ

þ 10�23
6!

H6ðyÞ þ . . .

�
’ðyÞ; ½28�

where �3 � �3=
ffiffiffiffiffi
~N

p
and �4 � �4= ~N .

This is the way we can incorporate higher-order
cumulants around the otherwise Gaussian distribu-
tion. We note that although the derivation here is
based on the approach to the Gaussian distribution
on the basis of the central limit theorem, the same
type Edgeworth expansion can also be found in the
context of nonlinear evolution of density fluctuations
starting from random Gaussian linear fluctuations.18)

In our problem, we of course put y F x/< where x
is the detector output. But we may have a different
control parameter than ~N which quantifies deviation
from Gaussian depending on the nature of the
underlying distribution.

Extention to a multivariate case around Gauss-
ian PDF ofN discretized time sequence of noises ni is
possible starting with the original noise PDF in the
Gaussian limit,

P ½fnig�dNn

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞNkKk

q exp � 1

2

XN
j;‘¼1

njðK�1Þj‘n‘
" #

dNn;

kKk � detK ½29�
which can be diagonalized by a real unitary matrixU
as nj ¼ Uj‘ ‘

njðK�1Þj‘n‘ ¼  jðUyK�1UÞj‘ ‘

¼
XN
p¼1

�p 
2
p �

XN
p¼1

y2p;

�p ¼ 1

�2p
; yp ¼  p

�p
; ½30�

where $p (p F 1 !N) are eigenvalues of the matrix
K!1. For each yp we can apply the Edgeworth
expansion independently, to yield

PEW ½fyig� ¼
YN
p¼1

"
1þ �

ðpÞ
3

3!
H3ðypÞ þ �

ðpÞ
4

4!
H4ðypÞ

þ 10�
ðpÞ2
3

6!
H6ðypÞ þ . . .

#
’ðypÞ ½31�

The log likelihood function ratio reads

ln �EW ¼ ðGaussian partÞ þ
XN
p¼1

ln

"
1þ �

ðpÞ
3

3!
H3ðŷpÞ

þ �
ðpÞ
4

4!
H4ðŷpÞ þ 10�

ðpÞ2
3

6!
H6ðŷpÞ þ . . .

#

�
XN
p¼1

ln

"
1þ �

ðpÞ
3

3!
H3ðypÞ þ �

ðpÞ
4

4!
H4ðypÞ

þ 10�
ðpÞ2
3

6!
H6ðypÞ þ . . .

#
½32�

where

yp ¼  p
�p

¼ 1

�p
Uy
pjnj; ŷp ¼ 1

�p
Uy
pjðnj � �ĥjÞ

d ln �EW
d�

����
�¼0

¼ ðGaussian partÞ

�
XN
p¼1

�
ðpÞ
3

3!
H 0

3ðypÞ þ
�
ðpÞ
4

4!
H 0

4ðypÞ þ . . .

1þ �
ðpÞ
3

3!
H3ðypÞ þ �

ðpÞ
4

4!
H4ðypÞ þ . . .

Uy
pj

ĥj
�p

½33�
If we expand logarithm in the right hand side of [32],
which is valid if deviation from Gaussian is small,
we find

ln �EW ’ ðGaussian partÞ þ
XN
p¼1

�
ðpÞ
3

3!
½H3ðŷpÞ �H3ðypÞ�

þ
XN
p¼1

�
ðpÞ
4

4!
½H4ðŷpÞ �H4ðypÞ� þ . . .

From this expression, the locally optimal statistic
reads

d ln �EW
d�

����
�¼0

’ ðGaussian partÞ

�
XN
p¼1

�
ðpÞ
3

2
ðy2p � 1Þ þ �

ðpÞ
4

6
ðy3p � 3ypÞ

" #
Uy
pj

ĥj
�p

þ . . .

½34�
For the case of stationary noise, we can obtain

more explicit expression by virtue of the discrete
Fourier transformation. Suppose that the data is
sampled with a time interval " from t F 0 to Tobs 2

N", namely, at tj F j" (j F 1, 2, + , N). Then the
discrete Fourier transform of n(tj) is given as
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~nðfmÞ ¼ �
XN
j¼1

nðtjÞe2�i
jm
N ½35�

at fm � m
N� with m ¼ � N

2 , � N
2 þ 1; . . . ; 0; 1; . . . ; N2 ,

assuming N is an even number. Its inverse reads

nðtjÞ ¼ 1

N�

XN
m¼1

~nðfmÞe�2�ijmN : ½36�

In the stationary Gaussian PDF

P ½fnig�dNn
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�ÞNkKk
q
� exp � 1

2

XN
j;‘¼1

nðtjÞK�1ðtj � t‘Þnðt‘Þ�2

" #
dNn;

½37�
we can expand the inverse covariance function as

K�1ðtj � t‘Þ ¼ 1

N�

XN
p¼1

gK�1ðfpÞe�2�iðj�‘Þ pN ½38�

so that we findXN
j;‘¼1

nðtjÞK�1ðtj � t‘Þnðt‘Þ�2

¼ 1

N3�3

XN
m;p;q¼1

~nðfmÞgK�1ðfpÞ~nðfqÞ�2N	mþp;NN	q�p;0

¼ 1

N�

XN
p¼1

~nðfN�pÞgK�1ðfpÞ~nðfpÞ

¼ 1

N�

XN
p¼1

gK�1ðfpÞj~nðfpÞj2 ½39�

where we have used an identity ~nðfpÞ ¼ ~n�ðfN�pÞ.
Using the discretized version of eq. [9], we find

gK�1ðfpÞ ¼ 2

SnðfpÞ ;

and hj~nðfpÞj2i ¼ 1

2
SnðfpÞTobs � 2~�2p: ½40�

It is simpler to consider two real valued quantities,
~nRðfpÞ � Re ~nðfpÞ and ~nIðfpÞ � Im ~nðfpÞ than deal-
ing with a complex variable ~nðfpÞ itself. Under the
distribution [37], these variables satisfy h~n2RðfpÞi ¼
h~n2IðfpÞi ¼ SnðfpÞTobs=4 and h~nRðfpÞ~nIðfpÞi ¼ 0, and
they do not have any correlation with modes of
different frequencies.

Hence we can identify

yp1 � ~nRðfpÞ
~�p

and yp2 � ~nIðfpÞ
~�p

½41�

in [30]. Then the locally optimal statistic correspond-
ing to [34] reads

d ln �EW
d�

����
�¼0

’ ðGaussian partÞ �
X2
i¼1

XN
pi¼1

"
�
ðpiÞ
3

2
ðy2pi � 1Þ

þ �
ðpiÞ
4

6
ðy3pi � 3ypiÞ þ . . .

# ê
hiðfpiÞ
~�pi

; ½42�

with ê
h1ðfpiÞ � Re

ê
hðfpiÞ and ê

h2ðfpiÞ � Im
ê
hðfpiÞ

where êhðfpiÞ is the Fourier transform of ĥðtjÞ.
4. Gaussian mapping

The Edgeworth expansion discussed in the
previous section works if and only if deviation from
Gaussian is small. In order to deal with more realistic
cases with larger deviation from Gaussian, we
introduce the following new method which we call
Gaussian mapping. In this approach the observed
one-point PDF or the marginal distribution can be
an arbitrary non-Gaussian distribution and also two
body correlation function can be fully taken into
account. Since it is a formidable task to determine
higher order correlation functions of noises observa-
tionally, this method makes use of and reproduces as
much observational information as possible.

We start with a multivariate random Gaussian

P
½f
ig�dN


¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞNk�k

q exp � 1

2

jð��1Þj‘
‘

� �
dN
 ½43�

with

�j‘ ¼ h
j
‘i; �jj ¼ 1; j�j‘j � 1;

where k�k denotes the determinant of the covariance
matrix 1ij. Suppose that the noise n(ti) is a function of
?i, n(ti) FQ[?i] at each time and that there exists an
inverse function of Q, Q!1 so that


i ¼ Q�1½nðtiÞ� � g½nðtiÞ� ¼ gðniÞ;
d
i ¼ g0ðniÞdni: ½44�

Then the multivariate PDF for ni reads

P ½fnig�dNn

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞNk�k

q exp � 1

2
gðnjÞð��1Þj‘gðn‘Þ

� �YN
p¼1

g0ðnpÞdnp

½45�
The one-point PDF reads
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P ðnjÞdnj ¼ P
½
j ¼ Q�1ðnjÞ�g0ðnjÞdnj
¼ 1ffiffiffiffiffiffi

2�
p e�

1
2g

2ðnjÞg0ðnjÞdnj: ½46�

This is to be determined by observations of the
“training” samples. The cumulative PDF

P̂ ðnÞ �
Z n

0

P ðn0Þdn0

is given by

P̂ ðnÞ ¼ 1ffiffiffiffiffiffi
2�

p
Z gðnÞ

0

e�
1
2y

2

dy ¼ 1ffiffiffi
�

p Erf
gðnÞffiffiffi

2
p

� �
;

Erfx �
Z x

0

e�t
2

dt: ½47�
We therefore find

gðnÞ ¼
ffiffiffi
2

p
Erf�1ð ffiffiffi

�
p

P̂ ðnÞÞ

¼
ffiffiffi
2

p
Erf�1 ffiffiffi

�
p Z n

0

P ðn0Þdn0
� �

: ½48�
For an arbitrary well behaved one point PDF, P(n),
we can find a function g(n) as above.

Next we incorporate two-point correlation func-
tion, which is important when noises cannot be
“whitened” in a pre-process of data analysis pipneline
with a relatively long correlation time.

hnðtmÞnðtnÞi
¼ hQ½
m�Q½
n�i
�Gaussian

¼
Z
dN


Qð
mÞQð
nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞNk�k

q exp � 1

2

jð��1Þj‘
‘

� �
: ½49�

Using Fourier transform

Qð
jÞ ¼
Z
dkje

�2�ikj
j ~QðkjÞ;

we find
hnðtmÞnðtnÞi

¼
Z
dkmdkn

~QðkmÞ ~Q�ðknÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞNk�k

q
� exp

�
�2�iðkm
m � kn
nÞ � 1

2

jð��1Þj‘
‘

�
d
md
n

¼
Z
dkmdkn ~QðkmÞ ~Q�ðknÞ

� exp½�2�2ðk2m � 2kmkn�mn þ k2nÞ� ½50�
¼
Z

1

2
~Q
uþ v

2

� 	
~Q
u� v

2

� 	
� exp½��2ð1� �mnÞu2 � �2ð1þ �mnÞv2�dudv ½51�
In case n is pure Gaussian we find n FQ(?) F

<? with < being the dispersion of the noise. Then the

Fourier transform of Q(?) is given by

~QðkÞ ¼ �

2�i
	0ðkÞ; ½52�

which reproduces hn(tm)n(tn)i F <21mn from [50] as it
should be.

If, on the other hand, ~QðkÞ is a smooth function
around k F 0, we can estimate [51] in terms of a
saddle point approximation to yield

hnðtmÞnðtnÞi � Kðtm; tnÞ

’ j ~Qð0Þj2
2�3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2mn

p : ½53�

So if we obtain K(tm,tn) FKmn observationally, we
can find 1mn as

�mn ’ 1� j ~Qð0Þj2
2�3Kmn

 !2
24 351=2

: ½54�

In the actual application, we should evaluate
[51] numerically to relate hn(tm)n(tn)i with 1mn. Note
that if noise is stationary, 1mn is also stationary. Once
these correspondences are achieved, one can calculate
the log likelihood function as

ln �GM ¼
XN
j;‘¼1

�
� 1

2
gðxj � �ĥjÞð��1Þj‘gðx‘ � �ĥ‘Þ

þ 1

2
gðxjÞð��1Þj‘gðx‘Þ

�
þ
XN
j¼1

ln
g0ðxj � �ĥjÞ
g0ðxjÞ ;

½55�
and the locally optimal statistic reads

d ln �GM
d�

����
�¼0

¼
XN
j;‘¼1

g0ðxjÞð��1Þj‘gðx‘Þĥj

�
XN
j¼1

g00ðxjÞ
g0ðxjÞ ĥj: ½56�

So far we have developed a new formalism
primarily for real time analysis dealing with a time
sequence of data directly. This method, however, may
be applied to the analysis in the frequency domain,
too, if we assume one-point PDF of each normalized
Fourier mode, ~nðfÞ/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihj~nðfÞj2ip

, satisfies the same
distribution function in analogy to [44]. In the next
section we employ a specific non-Gaussian model to
test the performance of the Edgeworth expansion and
Gaussian mapping based on the above treatment.

5. Application to Student’s t-distribution

Here we compare the results of the previous two
sections using a specific non-Gaussian model, namely,
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Student’s t-distribution as an example. This distri-
bution is an even function with a longer and larger
tails than the Gaussian distribution with the same
variance. Let us work in the Fourier space and
consider a single frequency mode, ~xðfÞ, assuming
that there is no correlation with the other frequen-
cies. Let us further assume that the noise has random
phase, so that Re ~nðfÞ � ~nR and Im ~nðfÞ � ~nI have
no bilinear correlation, h~nRðfÞ~nIðfÞi ¼ 0. Then these
two variables satisfy a bivariate t-distribution.
P2ð~nR; ~nIÞd~nRd~nI

¼ 1

2�

m

ðm� 2Þ~�2 1þ ~n2R þ ~n2I
ðm� 2Þ~�2

� ��mþ2
2

d~nRd~nI; ½57�
where ~�2 � h~n2Ri ¼ h~n2Ii ¼ hj~nðfÞj2i=2 and m, which
we assume is larger than 4, denotes a parameter
called the degree of freedom. This distribution
approaches Gaussian as we take m ! 1.

Let us consider the normalized variables
y1 � ~nR=~� and y2 � ~nI=~� with the PDF

P2tðy1; y2Þdy1dy2

¼ m

2�ðm� 2Þ 1þ y21 þ y22
m� 2

� ��mþ2
2

dy1dy2; ½58�
hereafter.

The locally optimal statistic calculated from this
PDF is given by

d ln �2tðy1; y2Þ
d�

����
�¼0

¼ mþ 2

m� 2þ y21 þ y22
y1

ê
h1
~�
þ y2

ê
h2
~�

 !
; ½59�

again with êh1 � Re
ê
hðfÞ and êh2 � Im

ê
hðfÞ.

The Edgeworth expansion of [58] can be
manipulated straight forwardly thanks to the ran-
dom phase nature which yields hy1y2i F 0. The fact
that odd-order cumulants all vanish makes the
expression even simpler. In the t-distribution, the
inverse of the degree of freedom, 1/m, acts as the
expansion parameter to quantify the approach to the
Gaussian distribution in large m limit. Up to
Oðm�3=2Þ we find

PEW ðy1; y2Þ
¼ 1þ �4

4!
H4ðy1Þ þ . . .

h i
� 1þ �4

4!
H4ðy2Þ þ . . .

h i
’ðy1Þ’ðy2Þ

¼� 1þ �4
4!

ðy41 � 6y31 þ y42 � 3y32 þ 6Þ
h i

’ðy1Þ’ðy2Þ:
½60�

Here 54 is the fourth cumulant of y1 and y2 calculated
by their marginal distribution

P1tðyÞ ¼
Z
P2tðy; y2Þdy2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm� 2Þ�p �

�
mþ 1

2

�
�

�
m

2

� 1þ y2

m� 2

� ��mþ1
2

;

½61�
that is, �4 ¼ hy41i � 3 ¼ 6

m�4.
As a result the locally optimal statistic corre-

sponding to [33] is given by

d ln �EW
d�

����
�¼0

¼ y1 � 4y31 � 12y1
4ðm� 4Þ þ y41 � 6y21 þ 3

� � ê
h1
~�

þ y2 � 4y32 � 12y2
4ðm� 4Þ þ y42 � 6y22 þ 3

� � ê
h2
~�

½62�

’ 1þ 3� y21
m

� �
y1

ê
h1
~�
þ 1þ 3� y22

m

� �
y2

ê
h2
~�
; ½63�

the last expression being valid for m	
maxð4; y41=4; y42=4Þ.

Now let us turn to the analysis in the Gaussian
mapping method. In the two variable system at hand,
thanks to the property hy1y2i F 0 again, this method
is equivalent with treating y1 and y2 as fully
independent variables with no mutual correlations.
Hence in this method the PDF is given by a product
of the marginal distributions [61],

PGMðy1; y2Þ ¼ P1tðy1ÞP1tðy2Þ: ½64�
One could in principle calculate g(n) function intro-
duced in the previous section to use the formula [56],
but in practice the same result can be obtained by
using [64] more directly in this case, to yield

d ln �GM
d�

����
�¼0

¼ ðmþ 1Þy1
m� 2þ y21

ê
h1
~�
þ ðmþ 1Þy2
m� 2þ y22

ê
h2
~�

½65�

’ 1þ 3� y21
m

� �
y1

ê
h1
~�
þ 1þ 3� y22

m

� �
y2

ê
h2
~�
; ½66�

the latter being valid for m	 maxð4; y21; y22Þ. In this
limit, the Edgeworth expansion and the Gaussian
mapping yield the same result. However, whenm, y1,
and y2 do not satisfy aforementioned inequalities,
we must use [62] and [65] directly.
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Let us study performances of the Edgeworth
expansion [62] and the Gaussian mapping [65]
comparing them with the result of the bivariate t-
distribution [59]. First Fig. 1 shows single variate t-
distribution with unit variance hy2i F 1 for m F 30
and 6 together with the normal distribution. As is
seen there t-distribution with smaller m has larger
tail.

For simplicity of illustration, let us focus on the
case êh2 F 0 and depict the dependence of the locally
optimal statistic along y1 direction. Figure 2 shows
the locally optimal statistic, which is expressed in
unit of êh1/~�, as a function of y1 for the case m F 30.
In this figure we have taken a somewhat atypical
value of y2 F 2 because for smaller |y2| the result of
the Gaussian mapping is indistinguishable from that
of the exact bivariate t-distribution [59]. As is seen
there even the Edgeworth expansion works well for
jy1j . 3.

Figure 3, on the other hand, shows a highly non-
Gaussian case with m F 6. There we have taken
y22 ¼ 1 as a typical value of its variance. As is seen
there, the agreement between the true bivariate t-
distribution and the Gaussian mapping is striking.
But the Edgeworth expansion works only in the small
vicinity of y1 F 0.

6. Conclusion

In the present paper, we have considered ways to
handle with non-Gaussian natures of detector noises
for the detection of gravitational waves with the
forthcoming KAGRA or other large-scale laser
interferometers. After reviewing the standard theory

of hypothesis testing and matched filter technique
used in the conventional analysis of gravitational
waves assuming Gaussian noises, we have presented
two ways to calculate the likelihood ratio or the
locally optimal statistic, which plays the central role
in hypothesis testing, in the presence of stationary
non-Gaussian noises.

One is the Edgeworth expansion which can
incorporate weak deviation from Gaussian noises,
and it has been used in various problems near the
regime the central limit theorem works17) as well as in
the weakly nonlinear evolution of density fluctua-
tions in the Universe.18)
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Fig. 3. Locally optimal statistics for Student’s t-distribution
(solid line), its Edgeworth expansion (short dashed line), and
the result of Gaussian mapping (long dashed line) for the case
m F 6 and y22 ¼ 1. The vertical axis is expressed in unit of êh1/~�.
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Fig. 2. Locally optimal statistics for Student’s t-distribution
(solid line), its Edgeworth expansion (short dashed line), and
the result of Gaussian mapping (long dashed line) for the
case m F 30 and y22 ¼ 4. The vertical axis is expressed in unit

of êh1=~�.
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Fig. 1. Probability distribution functions of Normal distribution
H(y) (solid line) and Student’s t-distribution [61] with m F 30
(long dashed line) and 60 (short dashed line), both normalized to
have a unit variance.
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The other is a new method which we call
Gaussian mapping. In this formalism we first
determine the single-time or the marginal probability
distribution of noises using training samples as well as
the two-time correlation function. Then we can
formulate the likelihood ratio which fully incorporates
these two data making use of mapping to Gaussian
distribution. Since observational determination of
higher-order correlation function is a formidable task,
in this sense, this method makes the most use of the
observationally available data of noise distribution.
This method can also be applied to the analysis in
frequency domain if each normalized Fourier mode
satisfies the same mono-variate distribution function.

Applying these two methods for a specific non-
Gaussian distribution called Student’s t-distribution,
which mimics actual noise distribution function in
the sense that it is a symmetric distribution with a
much heavier tails than Gaussian, we have shown
that the Edgeworth expansion works well if and only
if deviation from Gaussian is small but the formula
based on the Gaussian mapping works very well even
in highly non-Gaussian case.

These methods attempt to treat the stationary
non-Gaussian parts of noises by frontal attack, but
there is another approach which makes use of non-
Gaussianity to separate signals from noises known as
the independent component analysis.19)–21) This
method has not been used for the data analysis of
gravitational waves so far since we need detailed
information of envirometers such as seismograph
which measure various independent noises. In a
forthcoming paper22) we shall consider application
of this method to the data analysis for the first time.
We then plan to apply the analytic results of the
present and the next papers to actual noises observed
by existent detectors. By pursuing various analysis
methods we shall prepare for the completion of
KAGRA detector toward the first direct detection of
gravitational waves.
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