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Review

Genetic basis of glioma progression

By Hiroko Oncaki” and Paul KLEHUES
International Agency for Research on Cancer (IARC), 69372 Lyon, France
(Communicated by Takashi SUGIMURA, M. J. A., March 12, 2003)

Abstract: The most frequent and malignant brain tumor is the glioblastoma, which may develop de
novo (primary glioblastoma) or through progression from low-grade or anaplastic astrocytoma (secondary
glioblastoma). These glioblastoma subtypes constitute distinct disease entities that affect patients at dif-
ferent age, and evolve through different genetic pathways. Primary glioblastomas develop in older
patients (mean age, 55 years) and typically show EGFR amplification / overexpression, LOH on the entire
chromosome 10, PTEN mutations and, occasionally, MDM2 amplification. Secondary glioblastomas devel-
op in younger patients (mean age, 40 years) and typically contain TP53 mutations and/or p1 4**F promot-
er methylation as earliest detectable alterations. Additional changes in the pathway leading to secondary
glioblastomas include LOH on 19q and 10q, and RBI promoter methylation. Comunon to both primary and
secondary glioblastoma is LOH on 10q, distal to the PTEN locus; a putative suppressor gene at 10g25-qter
may be largely responsible for the glioblastoma phenotype.

The etiology of human gliomas is largely unknown. Hereditary diseases predisposing to the development
of gliomas e.g. Li-Fraumeni syndrome, Turcot syndrome, NF1, and NF2 syndromes are rare and cannot
explain the development of most of human gliomas. The presence of SV40 large T sequence has been
observed in a variety of human brain tumors including gliomas, and they are likely be originated from the
contamination of SV40 in poliovaccine between 1955-1962. However, there is no direct evidence that SV40
infection is associated with pathogenesis of human brain tumors. There is recent evidence that G:C—A:T
transition mutations at CpG sites in the TP53 gene are significantly more frequent in astrocytic tumors with
promoter methylation of the O°-methylguanine-DNA methyltransferase (MGMT) than in those without
methylation. This may suggest that endogenous alkylating agents that produce O%-methylguanine or relat-
ed adducts recognized by MGMT may be involved in the development of astrocytic brain tumors.
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Genetic pathways to primary and secondary
glioblastoma. The majority of glioblastomas develops
very rapidly without clinical, radiological or morphologic
evidence of a less malignant precursor lesion. They are
termed primary or de movo glioblastomas. Patients
with primary glioblastoma have a short clinical history
(<3 months in the majority of cases), and typically pre-
sent with large tumors which on MRI show central
necrosis, ring enhancement and perifocal edema.
Secondary glioblastomas develop slowly through pro-
gression from low-grade diffuse astrocytoma (WHO
grade II) or anaplastic astrocytoma (WHO grade III).

P Correspondence to: H. Ohgaki.

In a series of studies from our laboratory,l)'g)

genetic analyses were carried out on glioblastomas that
were selected on the basis of stringent criteria. Primary
glioblastomas were included if the clinical history was
less than 3 months and histopathological features of
glioblastoma were present at the first biopsy. The possi-
bility exists that primary glioblastomas may have a
longer preoperative history but in order to clearly dis-
tinguish between both subsets, the window of eligibility
was deliberately kept small. The diagnosis of secondary
glioblastoma required at least two biopsies from the same
patient, taken at an interval of <6 months to avoid a sam-
pling error and clinical as well as histopathological evi-
dence of progression from low-grade or anaplastic
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astrocytoma.

TP53 / MDM2 / p14*™ pathway. The p53 path-
way is an important mechanism controlling the G,/S
phases of the cell cycle. Following DNA damage
induced by chemicals, irradiation or other causes, pb3 is
activated and induces transcription of genes such as
p21™P 1O b 1A% binds to MDM2, resulting in the
stabilization of both p53 and MDM2.'"'® Secondary
glioblastomas have a high incidence of TP53 mutations
(>65%), of which approximately 90% are already present
in the first biopsy,”'® while TP53 mutations are rare in
primary glioblastomas (<10%). Amplification of MDM2 is
present in <10% of glioblastomas,”) and these all
appear to be primary glioblastomas that lack a TP53
mutation.?** Overexpression of MDM2 was observed
immunohistochemically in >50% of primary glioblas-
tomas.” Loss of p14ARF expression was observed in the
majority of glioblastomas (76%), and this correlated with
the gene status, i.e. homozygous deletion or promoter
methylation.” There was no significant difference in the
overall frequency of p14** alterations between primary
and secondary glioblastomas, but 14 methylation was
more frequent in secondary glioblastomas than primary
glioblastomas.” The analysis of multiple biopsies from
the same patients revealed p14** methylation already in
one-third of low-grade astrocytomas.”

Epidermal growth factor receptor (EGFR).
EGFR amplification is present in ~40% of primary
glioblastomas but in none of secondary glioblastomas
analyzed.”? EGFR overexpression also prevailed in pri-
mary glioblastomas (>60%) ws. secondary glioblas-
tomas (<10%).” All primary glioblastomas with EGFR
amplification showed EGFR overexpression and 11 of 15
(73%) of those with EGFR overexpression showed
EGFR amplification.” EGFR amplification is often asso-
ciated with structural alterations. To date, at least
seven mutated variants of EGFR have been identi-
fied,” the most common being variant IIl (EGFRVIII, also
called de2-TEGFR or delta EGFR),'® which occurs in 20-
50% of primary glioblastomas with EGFR amplifica-
tion.'”*”

p16™* /RBI pathway. The RBI protein controls
progression through G, into S phase of the cell cycle. The
CDK4/cyclin D1 complex phosphorylates the RB1 pro-
tein, thereby inducing release of the E2F transcript fac-
tor that activates genes involved in the G,—S transi-
tion.'” p16™** binds to CDK4, inhibits the CDK4/cyclin
D1 complex, and thus inhibits the G,—S transition.'®
Homozygous pl6™*** deletions were more frequent in
primary than in secondary glioblastomas.3)’7) However,
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there was no significant difference in the overall fre-
quency of pl16™** alterations (homozygous deletion
and promoter methylation) between these glioblastoma
subtypes.” Promoter methylation of the RBI gene was
found significantly more frequently in secondary (43%)
than in primary glioblastomas (14%). Methylation of the
RBI promoter was not detectable in low-grade and
anaplastic astrocytoma, indicating that RBI promoter
methylation is a late event during astrocytoma progres-
sion.® There was a significant correlation between loss of
RBI expression and promoter methylation of the RBI
gene, suggesting that promoter methylation is the
major mechanism underlying loss of RB1 expression.g)

LOH on Ip, 13q, 19q. There are several loci fre-
quently deleted in glioblastomas. LOH on 1p was
detected at a similar frequency in primary (12%) and in
secondary glioblastomas (15%).® LOH on 13q was
detected in 12% of primary and 38% of secondary
glioblastomas, and typically included the RBI locus.”
LOH on chromosome 19q was significantly more fre-
quent in secondary glioblastomas (54%) than primary
glioblastomas (6%).2 The putative suppressor genes on
1p and 19q have not yet been identified.

LOH on chromosome 10 and PTEN mutations.
Loss of heterozygosity (LOH) on chromosome 10 is the
most frequent genetic alteration in glioblastomas and
occurs in up to 80% of cases.?V? The majority of
glioblastomas appear to have lost an entire copy of
chromosome 10.2°% In cases with partial LOH on
chromosome 10, at least three common deletions have
been identified, i.e., 10p14-pter, 10q23-24 and 10g25-
qter,21)’22)’26)'28) suggesting the presence of several tumor
suppressor genes. Only one of these, the PTEN sup-
pressor gene at 10g23.3, has been identified. " It
encodes a protein with homology to the catalytic
domain of tyrosine phosphatase and to the cytoskeletal
proteins tensin and auxilin.??*”

LOH on chromosome 10 was detected at similar fre-
quencies in primary (47%) and secondary glioblas-
tomas (54%).” The majority of primary glioblastomas
showed LOH at all informative markers, suggesting loss
of the entire chromosome 10, while secondary glioblas-
tormas with LOH showed partial or complete loss of chro-
mosome 10q but no loss of 10p.” PTEN mutations
occur almost exclusively in primary glioblastomas
(32%) and rarely (4%) in secondary glioblastomas.”

Since primary and secondary glioblastomas are
usually histologically indistinguishable, at least one
genetic alteration should be common, if the phenotype of
these lesions is a reflection of genetic alterations.
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FFig. 1. Genetic pathways leading to primary and secondary glioblastomas.

Neuropathologists occasionally observe an abrupt tran-
sition from low-grade or anaplastic astrocytoma to
glioblastoma, suggestive of the emergence of a new
tumor clone. Such glioblastoma foci were microdissected
and compared the chromosome 10 status with that of the
respective low-grade or anaplastic astrocytoma areas of
the same biopsy. In glioblastoma foci, deletions were typ-
ically detected distal from PTEN at 10g25-gter, covering
the DMBTI and FGFR2 loci,*” suggesting that the
acquisition of a highly malignant glioblastoma phenotype
is associated with loss of a putative tumor suppressor
gene on 10g25-qter.

The genetic pathways leading to the evolution of
primary and secondary glioblastoma are summarized in
Iig. 1. The most frequent and characteristic genetic
alterations in primary glioblastomas are FGFR amplifi-
cation / overexpression, LOH on 10p and 10q, and
PTEN mutations. TP53 mutations and pI4** methyla-
tion are the earliest detectable alterations in the genetic
pathway leading to secondary glioblastomas, while LOH
on 19q, 10q, and loss of RB1 expression appear to be
later events.

Genetlic and gene expression profiles.  Using
cDNA expression arrays, significant gene expression
changes in comparison to normal brain tissues have been
observed in already low-grade diffuse astrocytomas.™ ™"
In unselected glioblastomas, up- or down-regulation

was found in >200 genes™ and in >3000 genes™ in com-
parison to normal brain tissues. A study using array
based comparative genomic hybridization revealed sig-
nificant amplifications of CDK4, GLI, MYCN, MYC,
MDM2, and PDGFRA genes in glioblastomas.™
Frequently amplified genes in glioblastomas included
PIK3CA (64%), EGFR (57%), CSE1L (567%), N-ras
(50%), FGR (36%), ESR (36%), and PGY1 (36%).” Tt
remains to be shown which of these are causally related
to malignant transformation of glial cells and which of
these are associated with glioma progression.

Etiology of human gliomas. The etiology of
sporadic brain tumors is still largely unknown.
Epidemiological studies failed to detect an unequivocal
causative link with environmental and lifestyle [actors,
with the exception of therapeutic irradiation.”

Genetic susceptibility. The Li-Fraumeni syn-
drome is a familial cancer syndrome with an autosomal
dominant trait of multiple primary neoplasms in children
and young adults, with a predominance of soft tissue sar-
comas, osteosarcomas and breast cancer and an excess
of brain tumors, leukaemia and adrenocortical carcino-
ma.””™ In most kindreds with Li-Fraumeni syndrome,
affected family members carry a germline mutation of
one allele of the TP53 gene."”""” Approximately 50% of
affected families develop at least one nervous system
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tumors,” and majority of brain turmors (<70%) were of
astrocytic origin, including low-grade astrocytoma,
anaplastic astrocytoma, and glioblastoma.42) It is
notable that there are several families with a remarkable
familial clustering of three or more brain tumors.**®
This raises the question of whether some TP53 muta-
tions carry an organ- or cell-specific component, but
genetic analysis did not reveal mutational hotspots for
specific tumor types or target tissues.” It is more likely
that farnilial clustering of brain tumors is influenced by
the genetic background of the affected families.*** Up
to date, 263 families with Li-Fraumeni syndrome have
been reported (http://www.iarc.fr/p531/).

Turcot syndrome is an autosomal dominant disorder
characterized by adenomatous colorectal polyps or
colon carcinoma and by development of medutloblastoma
or glioblastoma. Most Turcot syndrome occurs in the set-
ting of the familial adenomatous polyposis (FAP) or
hereditary  non-polyposis  colorectal  carcinoma
(HNPCC) syndrome. Gliomas (astrocytomas and
glioblastomas) develop in mismatch repair associated
Turcot syndrome type 1, which is characterized by an
inherited DNA replication error defect that leads to
genomic instability. Genes known to encode proteins
involved in this process include hMLH1 at 3p21, hMSH2
at 2pl6, and hPMS2 at 7p22.*” Approximately 160
cases have been reported since 1949.%

Neurofibromatosis type 1 (NF1) is an autosomal
dominant disorder predisposing to multiple neurofibro-
mas, malignant peripheral nerve sheath tumors, pilocyt-
ic astrocytomas in the optic nerve, astrocytomas, and
glioblastomas. The prevalence in most population is
estimated to be 1:4,000.46) Neurofibromatosis type 2
(NF2) is an autosomal dominant disorder predisposing to
schwannomas and gliomas (pilocytic astrocytoma and
diffuse astrocytoma). The prevalence is 1:40,000 new-
borns.*”?

In summary, gliomas may be associated with
hereditary syndromes, but these are very rare diseases,
and cannot explain the development of majority of
human gliomas.

Viral infection. Several viral oncogenes have
the capacity to induce tumors of the central nervous sys-
tem in experimental animals, including v-sr¢ large T,
polyoma middle T, and SV40 large T antigen.*™
Among these, SV40 is the only virus that has been
repeatedly implicated in the etiology of human brain
tumors.”?* 8V40 is a small double strand DNA virus,
and the SV40 large T antigen is the primary viral gene
product responsible for SV40 replication and SV40
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mediated cell transformation.”” SV40 is highly oncogenic
in hamsters, inducing a variety of tumors including
brain tumors. SV40 large T antigen binds to and inacti-
vates several tumor suppressor proteins, including p53
and Rb, and is capable of transforming human cells in
vitro.”?" SV40 can transform human cells®® and cause
chromosomal aberrations, aneuploidy, and point muta-
tions in human cells in vitro.*®

SV40 sequences have been detected at an overall
frequency of approximately 35% of human brain
tumors including gliomas,”**”?*® while surrounding
normal brain tissue rarely contained SV40.®°” An
infectious SV40 wild-type strain has been rescued by
transfection of DNA from a choroid plexus carcinoma
into permissive monkey kidney cells.” The natural
host of SV40 is the Macaque monkey and infection of
SV40 to humans does not usually occur unless there is
close contact with infected monkeys or their tissues.””*"
However, it is well known that through SV40-contami-
nated poliovaccine and adenovirus 3 and 7 vaccines
which were prepared using monkey kidneys between
1955 and 1963, SV40 may have been accidentally intro-
duced in large scale into human populations in the
United States, Canada, and Europe.”*”* Some chil-
dren treated with SV40-contaminated oral poliovaccine
excreted SV40 for several weeks,”” indicating that
SV40 has the capacity to replicate in humans. SV40
sequences were not detected in any brain tumor from
Finland, a country where SV40-contaminated polio vac-
cine was not used, while 25-56% of brain tumors from
Switzerland contained SV40 sequences.” This corrobo-
rates a study on the absence of SV40 in mesotheliomas
from Finnish patients%) and strongly suggests that
SV40 in human brain tumors originates from SV40-cont-
aminated polio vaccine.

Because of the large number of people involved, the
etiological role of SV40 in human cancers needs to be
carefully investigated. However, no selective increase in
the incidence of brain tumors has been reported in
populations that received SV40-contaminated polio
Vaccine,52) and incidence rates for brain tumors are sim-
ilar in countries that did (U. S. A., Switzerland) or did not
(Finland) use SV40-contaminated vaccine.” Thus, the
available evidence does not support a causative role of
SV40 in the development of human brain tumors.
Instead, its presence may reflect a bystander infection
due to an intra-tumoral microenvironment that favors

viral replication in humans with latent SV40 infection.

Endogenous factors. 0°-Methylguanine-DNA
methyltransferase (MGMT) is a repair protein that
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specifically removes promutagenic alkyl groups from the
o° position of guanine in DNA. MGMT therefore protects
cells against carcinogenesis induced by alkylating
agents, and it has been reported that MGMT activity is
inversely correlated to tissue-specific tumorigenesis
induced by alkylating agents in rats."% In tumor cells,
repair of O’-alkylguanine adducts by tumor cells has
been implicated in drug resistance, since it reduces the
cytotoxicity of alkylating chemotherapeutic agents.
Loss of MGMT expression may be caused by methylation
of promoter CpG islands®™™ and has been observed in a
variety of human cancers, including gliomas.m

MGMT promoter methylation was detected in 75%
of secondary glioblastomas, significantly more fre-
quently than in primary glioblastomas (36%).”
Approximately 50% of low-grade astrocytomas, oligo-
dendrogliomas, and anaplastic oligodendrogliomas also
showed MGMT methylation.g)’m The majority of low-
grade astrocytomas with MGMT methylation (92%)
contained a TP53 mutation, whereas only 39% of cases
without MGMT methylation carried a TP53 mutation.
Furthermore, G:C—A:T transition mutations at CpG
sites were significantly more frequent in low-grade
astrocytomas with MGMT methylation (58%) than in
those without (11%).” These results suggest that loss of
MGMT expression due to promoter methylation fre-
quently occurs at an early stage in the pathway leading to
secondary glioblastomas and appears to be associated
with increased frequency of TP53 mutations, in particu-
lar G:C—A:T transitions.

The best-characterized underlying mechanism of
G:C—A:T transitions at CpG sites is the deamination of
5-methylcytosine which is clustered at CpG sites,
resulting in a substitution of 5-methylcytosine by
thymine. This occurs spontaneously or factor-mediated,
e.g. through the action of oxygen radicals or by nitric
oxide produced by nitric oxide synthase in conditions of
chronic inflammation.” However, it has been shown that
O°-methylation of the guanine moiety at CpG islands is
not efficiently repaired by MGMT if normal 5-methylcy-
tosine is present in the TP53 sequence.74) This raises the
possibility that P53 mutations at CpG sites may not be
due to deamination of 5-methylcytosine alone. They
may, in addition, result from endogenous factors that
produce DNA adducts at the 0° position of guanine. A
great variety of adducts at this position have been
shown to be substrates for repair by MGMT.” Such
adducts typically result from exposure to N-
nitrosamides and related alkylating agents that cause
brain tumors in rats,”® but it remains to be shown

. [Vol. 79(B),

whether these carcinogens are involved in the etiology of
human brain tumors.
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