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Abstract: In this paper the theory of secular perturbations of asteroids with high inclinations
and eccentricities (1962) is reviewed and extended analytically for orbits of Kuiper-belt objects and
the problem of stellar three bodies consisting of a binary and a distant third body. The theory thus
extended seems to be consistent with numerical results published in various papers on subjects like
periodic comets, planets of extra-solar systems, star clusters and binaries of black-holes.
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Introduction. In the previous paper1) Kozai
showed that when the inclination and/or the eccen-
tricity are large enough the secular perturbation the-
ory for asteroids exhibits orbital element variations
quite different from those described in classical text-
books of celestial mechanics. In fact such textbooks
assume that inclinations and eccentricities of aster-
oids are so small that their squares can be neglected.
The 1962 paper is republished2) with comments by
Marsden3) when the American Astronomical Society
celebrated its centennial anniversary.

In the paper1) Kozai shows that
√

a(1− e2)cos i,
a, e and i being the semi-major axis, eccentricity
and inclination, respectively, is constant under the
assumption that the disturbing planet moves in a cir-
cular orbit. It was also shown that after averaging
the disturbing function with respect to the mean
anomaly of the asteroid and the mean longitude
of the disturbing planet, the equations of motion
are reduced to a system of one degree of freedom.
Moreover, it was demonstrated that a stationary
solution with fixed argument of perihelion as well as
constant eccentricity and inclination may exist if the
value of (1 − e2) cos2 i is smaller than 0.6. Around
the stationary solution there is a region, in which
the argument of perihelion librates around 90◦ or
270◦ and the eccentricity and inclination vary widely
with the argument of perihelion in and near libration
regions.

Although any difference among various secu-
lar perturbation theories cannot be detected clearly
by tracing asteroid motions for decades or so, the
validity of the theory was verified by integrating
numerically equations of motion for a long time.4)

Subsequently Kozai5) showed that the method can
be applied to the case, for which several disturbing
planets move in the same plane with circular orbits
and also applied the theory to comets5) and Pluto.6)

By using the theory, stability of asteroid motions,
particularly with high eccentricity, was discussed4),5)

and members of Pallas family with high inclination
were identified.5)

As Kuiper-belt objects, near-earth objects and
planets of extra-solar systems are discovered, it
appears that there are many objects, for which
the inclinations and/or eccentricities are large.7),8)

Therefore, the theory was applied to try to explain
how such high inclinations and eccentricities can be
produced by gravitational attraction of a third body.

The theory also provides a mechanism for
increasing the eccentricity of a binary system due
to a distant third body in a highly inclined plane
around the binary. When the eccentricity becomes
larger, tidal dissipation effects and the gravitational
radiation emitted from the system for the case of
a black-hole binary are increased so that the orbital
size of the binary is significantly reduced. In order
to apply the theory to super-massive black-holes, the
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additional effect of the general relativity theory must
be considered.9)

In this paper the author tries to formulate ana-
lytical expressions also for the cases of Kuiper-belt
objects, for which the disturbing planets are moving
inside their orbits, and for that of the stellar three
body problem consisting of a binary and a distant
third body.

Equations of motion. Let us assume that the
three bodies, S with mass m0, P with mass m and
J with mass m′, are moving under their mutual
attraction. Then the force function, U , is writ-
ten with the gravitational constant, k2, as U =
k2(m0m/R + m0m

′/R′ + mm′/∆), where R, R′ and
∆ are, respectively, the distances between S and P ,
S and J and P and J .

When their coordinates in an inertial system are
written as rS , rP and rJ , the equations of motion
for the three bodies are formulated in the usual way.
Then the relative coordinates, r of P with respect
to S and r′ of J with respect to the center of gravity
of S and P , are introduced as r = rP − rS , r′ = rJ −
(m0rS + mrP )/(m0 + m).

When r/r′ is smaller than 1, the distances, R,
R′ and ∆′, are expressed in terms of r, r′ and s, with
s = (r,r′)/rr′, by the following equations in addition
to R = r;

R2 = r′2
[
1 + 2

m

m0 + m

r

r′
s +

(
m

m0 + m

r

r′

)2 ]
,

∆2 = r′2
[
1− 2

m0

m0 + m

r

r′
s +

(
m0

m0 + m

r

r′

)2 ]
. [1]

Using the Legendre function, Pn, the force function
becomes

U = k2

[
m0m

r
+

(m0 + m)m′

r′
+

m0mm′
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r2

r′3
P2(s)

]
.

[2]

Higher order terms with respect to r/r′ are neglected.
Hence the equations for r and r′ are,
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The equations [3] and [4] show the main terms for the
two body problem and the disturbing terms due to
the third body for P and J and the disturbing terms
are used as disturbing functions in the following dis-
cussion.

The equations of motion are also written by
means of the following canonical variables;

L = µa1/2, l = mean anomaly,

G = L
√

1− e2, g = argument of perihelion,

H = Gcos i, h = longitude of ascending node,

where µ2 = k2(m0 +m′) and F = k2/(2L2)+disturb-
ing function.

In this paper only the secular perturbations are
treated by averaging the disturbing function with
respect to the mean anomaly of the disturbed body
and the mean longitude of the disturbing body. This
makes L likewise a constant. The problem discussed
here is restricted to the case, for which J is not per-
turbed and the potential of the disturbing force is
axially symmetric so that h does not appear in the
disturbing function. It follows that H is constant,
hence H/L is also constant in the system discussed.
In this way the system is reduced to that of one
degree of freedom with G and g as the variables. The
secular part of the disturbing function is denoted by
Rs and the parameter, Θ, is introduced as,

Θ = H/L =
√

1− e2 cos i. [5]

Accordingly, the equations of motion to be
solved are reduced to; dG/dt = ∂Rs/∂g, dg/dt =
−∂Rs/∂G, where Rs is constant since the time does
not appear explicitly in Rs. In the following sections
the equations of motion are solved for several cases.

Asteroids. For the case of asteroids moving
mostly inside Jupiter’s orbit (a = 5.20 AU, e = 0.049,
i=0.◦3 referred to the invariable plane of the solar sys-
tem), S, J and P are, respectively, the sun, Jupiter,
and the asteroid and the mass of the asteroid, m, can
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be assumed to be zero. The averaged part of the dis-
turbing function, Rs, is then written by neglecting
terms with the factor (a/a′)4 and replacing m′/m0

by m′;

Rs = − 1
16

µ2

a′ m′
(

a
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)2[(
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)2 )(
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]
. [6]

Note that odd-order Legendre terms disappear since
Jupiter’s eccentricity is assumed to be zero.

Since it is assumed that Jupiter moves in a cir-
cular orbit and the orbital plane of Jupiter is taken
as the reference plane, the longitude of the ascending
node, h, disappears in the disturbing function. Then
the equations of motion are reduced to;
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where n is the mean motion and µ is replaced
by na3/2.

If 2g is 0◦ or 180◦, dG/dt vanishes. And if
cos 2g = 1 it is seen that dg/dt does not vanish,
whereas if cos2g = −1, dg/dt can vanish if the equa-
tion, 3(G/L)4 = 5Θ2, has a root for (G/L)2 = 1− e2.
That is, if Θ2 is smaller than 0.6, the equations [7],
[8] can have a stationary solution with 2g = 180◦.
When a/a′ attains a larger value, this relation is
modified. However, generally as a/a′ becomes larger,
a stationary solution exists even for a little larger
value of Θ.

The theory can be extended to the case, for
which planets other than Jupiter are included as dis-
turbing bodies under the condition that all are in
the same plane with circular orbits. In this paper
Saturn (a = 9.55 AU, e = 0.056, i = 0.◦9), Uranus
(a = 19.22 AU, e = 0.045, i = 1.◦0) and Neptune
(a = 30.11 AU, e = 0.009, i = 0.◦7) are included. Then
with given values of a and Θ, numerical values of Rs,
which is the sum of the averaged values of m′/∆ for

all the planets, are computed for various sets of 2g
and X = G/L =

√
1− e2 and equi-Rs-value curves

are drawn. When the initial values of 2g and X are
assigned, the motion can be followed along an equi-
Rs-value curve.

In Fig. 1 equi-Rs-value curves are shown for a =
2.77 AU and Θ = 0.8 and those for Θ = 0.2 with the
same value of a are displayed in Fig. 2. The horizontal
axis represents values of 2g between 0◦ and 360◦,
whereas the vertical axis displays X =

√
1− e2. The

values of X are shown along the left vertical axis and
along the right axis are shown values of e and i.

Along the axes of 2g = 0◦ and 360◦ in the fig-
ures, the value of Rs is increased as X is decreased,
that is, downwards. On the other hand along the line
of 2g = 180◦, the value of Rs is decreased as X is
decreased from 1 and attains its minimum value at
the stationary point and then increases, again, up
to X = Θ. The motion of g, which is proportional
to −∂Rs/∂G, or equivalently −∂Rs/∂X, is direct
except in the part above the stationary point along
the line of 2g = 180◦. Therefore, the libration region
appears around the stationary point and the argu-
ment of perihelion librates there. In the other regions
the motion of the argument of perihelion is direct.

Figure 1 is for the asteroid (2)Pallas represented
by × and some of the Pallas family members are
denoted by ©.5) Although the eccentricities of the
Pallas family asteroids are scattered between 0.0
and 0.3, their original eccentricities should have been
nearly equal to each other. Figure 2 shows that the
eccentricity of an asteroid along the boundary curve
of the libration region can vary between 0.0 and 0.96.
In fact more than 10 asteroids are found to be in
libration regions in such figures.10)

Outside libration region the eccentricity for any
curve reaches its minimum value at 2g = 0◦, that is,
when the major axis of the orbit is in the plane of the
disturbing planets, and the maximum at 2g = 180◦

when the major axis is far from the reference plane.
In the libration region the major axis never lies in the
plane of the disturbing planets and the eccentricity
reaches both the maximum and the minimum val-
ues at 2g = 180◦. This means that asteroids, even if
their aphelia are outside Jupiter’s orbit, can avoid
approaching Jupiter very closely. However, if any
equi-Rs-value curve in the lower part of figures is
followed, the eccentricities do not change enough to
avoid any close approach. This is the case for periodic
comets,5) for which usually the value of Rs is large
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Fig. 1. Equi-Rs-value curves for a = 2.77AU and Θ = 0.8. Pallas family asteroids are plotted.

since most comets frequently approach Jupiter.4)

Since effects of the planets other than Jupiter,
the nearest planet with the largest mass, are not
appreciable, Figs. 1 and 2 are not much different from
those, in which only Jupiter is considered. For this
case the figures do not depend on the mass of Jupiter,
although the motion of g is proportional to the mass.
Also the figures are not distorted significantly by the
value of a unless a/a′ is very close to 1.

Therefore, it is remarkable to see that the sec-
ular perturbations of any high inclination and/or
eccentricity asteroid can be roughly estimated by the
method discussed here unless it approaches Jupiter
very closely. This is verified by comparing the results
with those by numerical integrations which take into
account of forces by major planets with actual orbits.

Kuiper-belt objects. Since orbits of Kuiper-
belt objects are mostly outside Neptune’s orbit, r/r′

is assumed to be larger than 1. Then the disturbing
function, R, can be expressed as;

R = µ2m′(r2 + r′2 − 2rr′s)−1/2

= (µ2m′/r)
∑

Pj(s)(r′/r)j . [9]

And for averaging the disturbing function the
following relations should be used;

(a/r)3 = (1− e2)−3/2, (a/r)3 cos2f = 0,

(a/r)5 = (1− e2)−7/2

(
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3
2
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)
,

(a/r)5 cos2f =
3
4
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(a/r)5 cos4f = 0. [10]

The second relation shows that cos2g term does
not appear in P2. Therefore, in the following expres-
sion terms up to P4 are included, which gives;
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Fig. 2. Equi-Rs-value curves for a = 2.77AU and Θ = 0.2.
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Note that the expression in the first line is the same
as that for an artificial satellite around the oblate
earth except for the factor depending on a and a′.

Then the equations of motion are;
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The equation for dG/dt shows that the ampli-
tude of cos2g term is proportional to (a′/a)2(L/G)
since there is no sin2g term due to P2. Note that fac-
tors such as (a′/a)2 do not appear in cos2g term for
the asteroid case. The first term in dg/dt vanishes
if Θ =

√
1/5 (i = 63.◦4), which is the critical incli-

nation of the artificial satellite problem. The ampli-
tude of cos 2g term in [13] is usually small unless
the eccentricity is very large, so that no stationary
solution exists for any moderate value of Θ, whereas
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Fig. 3. Equi-Rs-value curves for a = 40AU and Θ = 0.8.

a stationary solution may exist for i = 63.◦4.
Figure 3 displays equi-Rs-value curves for

a = 40AU and Θ = 0.8 and Fig. 4 is for Θ = 0.2
with the same value of a by including the effect of
major planets moving in the same plane with circu-
lar orbits. The features are quite different from those
of Figs. 1 and 2 since the amplitudes of the variation
of X as functions of 2g are smaller. Some libration
regions appear around stationary points on the line
of 2g = 0◦, as these points correspond to local max-
ima of Rs. However, as there is a high possibility
that Kuiper-belt objects approach Neptune closely
at 2g = 0 if the eccentricity is larger than 0.25, the
computation near the vertical axes for these figures
are not so accurate.

In Fig. 4 there are two libration regions around
points on the line of 2g = 180◦. The upper libration
region is due to the critical inclination (63.◦4) and the
lower one represents a stable libration region7) with
large eccentricities and moderate values of inclina-

tions. Such libration regions appear also when equi-
Rs-value curves are drawn for some of long-period
comets like 1P/Halley.5)

Figure 5 is for Pluto (a = 39.5 AU, e = 0.249,
i = 15.◦6, g = 113.◦8), for which the critical argument,
3λ′ − 2λ + �′, librates around 180◦. Here λ and λ′

are the mean longitudes of Neptune and of Pluto,
respectively and � is the longitude of the perihelion
of Pluto. In fact Pluto is in 2 : 3 mean motion reso-
nance with Neptune.

The computation is made under the assump-
tion that the critical argument is fixed at 180◦,
that is, the opposition of Neptune and Pluto takes
place only at the aphelion of Pluto. Then as the
eccentricity becomes larger, the mutual distance at
the opposition becomes larger so that the value of
Rs becomes smaller. However, when the eccentric-
ity becomes much larger, a close approach to Uranus
becomes possible so that the value of Rs becomes
larger. Therefore, a shallow libration region appears6)
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Fig. 4. Equi-Rs-value curve for a = 40AU and Θ = 0.2.

in Fig. 5 and Pluto, marked as ×, is near the bound-
ary of the libration region. Similar figures can be
drawn for a = 48 AU of 1 : 2 mean motion resonance
case if the critical argument librates around 180◦.

If a′/a attains a smaller value, equi-Rs-value
curves for not so large value of the eccentricity
becomes nearly horizontal. Therefore, solutions of
nearly constant and low eccentricity can exist even
though the inclinations are high. However, it is not
possible that a high inclination orbit is produced
from a low inclination one by this mechanism.

Stellar three body problem. The increase of
the eccentricities of binary orbits in star clusters has
frequently been noticed by Valtonen,11) Aarseth12)

and others in their numerical integrations of the
N-body problem when a third body is in bound
motion around a binary. Since many planets of extra-
solar systems13),14) and even cool Algol stars15) have
eccentric orbits, the importance of the third body
is emphasized and the secular perturbation theory
provides a mechanism for increasing the eccentricity

from nearly zero to large values. By this mechanism
the increase of the tidal friction effect and the gravi-
tational wave radiation from black-hole binaries9),16)

follows. For the case of a black-hole binary the effect
of general relativity should be included.9)

Now S with mass, m0, and P with mass, m, con-
stitute a binary or a system of a star and its planet
and J is the third body moving in a circular orbit
with the mass, m′. The orbit of J is also perturbed
since the central body is not a point source. Since
the motion of J is dynamically similar to that for
Kuiper-belt objects, J can have an orbit of very low
eccentricity and high inclination at least during the
period when the orbit of the central system is cir-
cular. Moreover, if the inclination is nearly 90◦, the
node, that is, the orbital plane of J , does not move
much like that of a polar satellite. However, the cen-
tral orbit is expected to become eccentric afterwards.

To understand how the orbital variations behave
as functions of the arguments of peri-astron, dynam-
ical time-scales of J and P are compared. The
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Fig. 5. Equi-Rs-value curves for Pluto marked as x, for which a = 40AU and Θ = 0.8.

disturbing factors for J with primed orbital elements
and P are, respectively, [mm0/(m+m0)2](a/a′)2 and
[m′/(m + m0)](a/a′)3 according to the equations [3]
and [4]. The time-scales are derived by multiply-
ing them by their respective mean motions, n′ =
k(m0 +m+m′)1/2a′−3/2 and n=k(m0 +m)1/2a−3/2.
Then the ratio of the time-scale of P with respect
to J , γ, is expressed as,

γ =

√
a′

a

√
m0 + m

m0 + m + m′
m′(m0 + m)

m0m
. [14]

For the problem treated here a′/a is larger
than 1. If m′ is much larger than the other masses,
γ attains a very large value, and therefore, the
variations of orbital elements of P are much more
rapid than those of J . This corresponds to the lunar
problem and if the orbit of J , the sun, is assumed to
be circular, the orbit of P , the moon, can be traced
by the theory treated here. On the other hand if P is

a planet with a small value of m moving around S,
the orbits of S and J are nearly those of the two body
problem, and, therefore, the configuration of the sys-
tem is very similar to that of the case for asteroids.
Also if a′/a attains a very large value, the orbit of J

with respect to the center of mass of S and P can be
also approximated by that of the two body problem.

And if γ attains a large value with a set of the
three masses and a′/a, the orbital variations for J are
slower. Moreover, the amplitude of the cos2g′ term
for J is small because of the factor, (a/a′)2. This
concludes that the orbital variations for P take place
more rapidly and more widely than those for J under
the assumptions stated above. In fact if γ attains
a large value, J can move in a circular orbit and
a fixed plane. Also if a′/a is sufficiently large and if
the outer inclination is almost 90◦, the node, that is
the orbital plane, does not move much.

Therefore, as far as the orbit of J can be
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assumed to be circular in a fixed plane, the secular
perturbation theory discussed here can be applied to
the stellar three body problem. In fact direct three-
body integrations show that the restriction to large
mass for the third body is not necessary17) and, in
principle, any value can produce the desired effect
except that the time-scale may be long.18),19)

In summary, in this paper it is shown that
Figs. 1 and 2 represent dynamical characteristics of
the motion of any system with potential similar to
the case of asteroids discussed previously. For such
a system once the value of Θ =

√
1− e2 cos i is given

the motion can be described. Thus for this case both
the inclination and the eccentricity can vary widely
as functions of twice the argument of perihelion if
the value of Θ is sufficiently small. By this way the
actual motion of such an asteroid can be estimated.

For orbits of Kuiper-belt objects, Figs. 3 and 4
show that the inclinations and the eccentricities are
not increased appreciably from zero according to the
secular perturbation theory unless there are mean-
motion and/or secular motion resonance. Still low
eccentricity and high inclination orbits can exist for
a long time interval.

For the stellar three body problem treated in this
paper the distant third body can increase the eccen-
tricity of the orbits of the binary stars or a planet
around a component of double stars, when the orbital
plane of the third body is highly inclined to that of
the binary or the system of a star and a planet under
some conditions. In fact there are such cases among
planets in extra-solar system, triple stars in star clus-
ters and others as simulation computations show.

Periodic comets usually follow equi-Rs-value
curves appearing in lower part of Fig. 2, for example,
as their inclinations take moderate values whereas
the eccentricities are large and do not change much
with the argument of perihelion. It is also possible
that some of comets like 1P/Halley follow curves sim-
ilar to those in the lower libration region in Fig. 4 as
their orbits are extended even over Neptune.

In conclusion numerical results published in sev-
eral papers on asteroids, Kuiper-belt objects, comets,
planets of extra-solar systems, star clusters, stellar
three body problem as well as other work seem to
support the extended theory presented here.
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