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Abstract: In this article a brief review of the theory of one-dimensional nonlinear lattice is
presented. Special attension is paid for the lattice of particles with exponential interaction between
nearest neighbors (the Toda lattice). The historical exposition of findings of the model system, basic
equations of motion, special solutions, and the general method of solutions are given as chronologi-
cally as possible. Some reference to the Korteweg-de Vries equation is also given. The article consists
of three parts. Firstly, the idea of dual system is presented. It is shown that the roles of masses and
springs of a harmonic linear chain can be exchanged under certain condition without changing the
eigenfrequencies. Secondly, the idea is applied to the anharmonic lattice and an integrable lattice
with exponential interaction force between adjacent particles is obtained. Special solutions to the
equations of motion and general method of solution are shown. In the last part, some studies on the
Yang-Yang’s thermodynamic formalism is given.
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Introduction. It was around 1960 when we
organized a group of physicists especially interested
in the results of computer experiments just becom-
ing available.1) It was shown that some perturba-
tion methods rather frequently used in physics failed
in leading to correct results obtained by numerical
computations. For example, the vibrational states
of a lattice studied by computer exhibited sharp
localization around light-mass impurities, whereas
perturbation method predicted only small spreading
of the frequency spectrum.2)–4) As another example,
enhancement of heat flow due to nonlinearlity of the
interaction force between crystal atoms was shown
by the computer, whereas common theories based on
approximate method predicted the opposite effect.5)

Dual lattice. I first examined the eigen-
frequencies of the simplest systems, which were one-
dimensional lattice with linear interaction between
particles. I examined lattices which contain mass
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impurities (different masses) with those containing
interaction impurities (different force constants),
to find that different lattices of the different sort
may have the same frequency spectra. I consid-
ered the reason, and found the following mechanical
theorem.6)

Consider a linear lattice of N particles with
masses m1,m2, . . . ,mN . If the force constants of the
springs are K1,K2, . . . ,KN , the total Hamiltonian is

H(p,x) =
N∑
j=1

p2
j

2mj
+

N∑
j=1

Kj

2
(xj −xj−1)2 [1]

where xj and pj are canonical coordinate and
momentum. We put x0 = 0, xj = r1 + r2 + · · · + rj .
Then the relative coordinate rj = xj − xj−1 can be
used as the generalized coordinate, together with the
conjugate momentum sj = ∂H/∂ṙj . We see

sj − sj+1 = pj . [2]

Further we may exchange the roles of the generalized
coordinates and momenta writing
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rj = Pj/a, sj = −aQj [3]

here a is an arbitrary constant. Then the Hamilton-
ian is transformed to

H(P,Q) =
N∑
j=1

1
2m∗

j

P 2
j +

N∑
j=1

K∗
j

2
(Qj+1 −Qj)2,

QN+1 = 0, [4]

where

1
m∗
j

=
Kj

a2
, K∗

j =
a2

mj
. [5]

The lattice thus obtained consists of particles
with the masses m∗

1, m
∗
2, . . . and the spring con-

stants K∗
1 ,K

∗
2 , . . .. Lattices expressed by H(p,x) and

H(P,Q) have the same spectra, and may be called
dual to each other.

Nonlinear lattice. The problem of wave
motion in nonlinear media is interesting not only as
a purely mechanical problem, but also in connection
with many physical phenomena such as shallow water
waves, plasma waves, and heat conduction in crys-
tals. Thus nonlinear phenomena have infinite variety
compared with linear cases. It seems quite important
to find feasible mathematical models to extend our
way of maneuvering nonlinearity.

Vibration of a system of particles joined by har-
monic springs can be described by superposition of
normal modes which are mutually independent. If
we excite a normal mode, its energy is not trans-
fered to other normal modes. The system of harmonic
oscillators never reaches the state of thermal equilib-
rium, and is non-ergodic. Since the presence of non-
linear terms may make the calculation insurmount-
ably complex, usually it is assumed that the non-
linear terms guarantee the ergodicity and approach
to the state thermal equilibrium.

Fermi, Pasta, and Ulam (FPU) intended to
verify this expectation by computer experiments.7)

Unfortunately, because of the ill conditions after
the world war II, I could not see FPU’s paper at
that time, because it was printed only as a report
of the Los Alamos research center. However I had
some information about FPU through the works by
J. Ford and some others.8),9) It was that, contrary
to the expectation of FPU, it was clarified that one-
dimensional nonlinear lattices marvellously sustained
the character of linear lattices.

I happened to believe as follows: There will be

some model system, expressible in terms of simple
mathematical formula, and admits truely exact ana-
lytic solutions. I started to seek out the soluble
model, and actually found it before 1967.10)–15)

The equations of motion of a uniform one-
dimensional lattice are usually written in the form

mẍn = −V ′(xn−xn−1) +V ′(xn+1 −xn) [6]

where V (r) stands for the interaction potential
between adjacent particles. I thought it could be
more favorable to use the transformation described in
the preceding section, which exchanges the role of the
interaction terms with that of the momentum. Then
the Hamiltonian for the above equations of motion
turns to be

H =
N∑
n=0

V (rn) +
1

2m

N∑
n=0

(sn− sn−1)2. [7]

The canonical equations of motion are then given as

ṙn =
∂H

∂sn
=

1
m

(2sn− sn−1 − sn+1),

ṡn = − ∂H

∂rn
= −dV (rn)

drn
. [8]

We confine ourselves to the case where the last equa-
tion is solved for rn in such a way that

rn = − 1
m
χ(ṡn). [9]

Then we have the fundamental equation

d

dt
χ(ṡn) = −2sn + sn−1 + sn+1. [10]

Sometimes it is convenient to use

Sn =
∫ t

sn dt [11]

to write the above equation in the form

χ(S̈n) = −2Sn +Sn−1 +Sn+1. [12]

Finding of the integrable lattice. We have
to find the potential function V (r), or its inverse
function χ(ṡn), which makes the above equations of
motion satisfied for some non-trivial solutions. It is
also hoped that the form of V (r) has some similarity
with that of the intermolecular potential.

The above equations of motion looks like a recur-
rence formula for a periodic function by which sn+1
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is derived from sn−1 and sn. In the linear case sn
can be trigonometrical (sinusoidal) functions. Then,
for nonlinear lattice, how about elliptic functions?
I tried for some days in vain. Then an idea came
about, and I tried the square sn2(u) of the Jacobian
elliptic function sn(u). I found the addition formula
for the Jacobian elliptic function

sn2(u+ v)− sn2(u− v) = 2
d

dv

snu cnu dnu sn2 v

1− k2 sn2u sn2 v
[13]

where all of the elliptic functions sn, cn, dn are of the
same modulus k, and by definition

cn2u= 1− sn2u, dn2u= 1− k2 sn2u. [14]

We define a function ε(u) by

ε(u) =
∫ u

0

dn2u du [15]

and use the formula

d

du
snu= cnu dnu,

d

du
cnu= −snu dnu,

d

du
dnu= −k2 snu cnu, [16]

to have

ε′(u) = dn2u,

ε′′(u) = −2k2 snu cnu dnu. [17]

Integrating [13] with respect to v, we get

ε(u+ v) + ε(u− v)− 2ε(u) =
ε′′(u)

1/sn2 v− 1 + ε′(u)
.

[18]

Though ε(u) is not a periodic function, Jacobian
zn function and the derivative defined by

Z(u) = ε(u)− E

K
u, Z ′(u) = dn2u− E

K
[19]

are periodic functions with the period 2K, where
K and E are respectively the complete elliptic inte-
grals of the first and the second kind. Using these
functions we rewrite the addition formula as

Z(u+ v) +Z(u− v)− 2Z(u)

=
d

du
log

[
1 +

Z ′(u)
1/sn2 v− 1 +E/K

]
. [20]

This is to be compared with [10].

Then we find that we have obtained a periodic
wave given as

sn =
2Kν
b/m

Z(u) [21]

where b is a constant, and

u= 2
(
νt± n

λ

)
K, v = 2K/λ. [22]

Here ν (the frequency) and λ (the wavelength) are
constants, and since du= 2Kνdt, by comparing [10]
with [20] and [21], we get

χ(ṡ) =
m

b
log

[
1+

(b/m)/(2Kν)2

1/sn2 v−1+E/K
ṡ

]
−mσ [23]

where b and σ are constants. χ(ṡ) = −mr is the
inverse function of ṡ = −V ′(r), which must not con-
tain ν and v. It means that the factor

(b/m)/(2Kν)2

(1/sn2(2K/λ))− 1 + (E/K)
=

1
a

[24]

is a constant. Refering to [23] we find that

χ(ṡ) =
m

b
log

(
1 +

ṡ

a

)
−mσ [25]

and further by [9], that

r = −1
b

log
(
1 +

ṡ

a

)
+σ [26]

or, solving for ṡ, and referring to [8] we obtain

V ′(r) = −a(e−b(r−σ) − 1
)
. [27]

Integrating, we finally obtain

V (r) =
a

b
e−b(r−σ) + ar+ const. [28]

In what follows, we use simpler expression by
putting σ = 0 to write

V (r) =
a

b
e−br + ar (ab > 0). [29]

This is called the Toda potential (Fig. 1). For small r
we have

V (r) =
ab

2
r2 − ab2

6
r3 + · · · . [30]

Thus for sufficiently small oscillation, the lattice
looks like a linear lattice with the spring constant
κ = ab. For somewhat large motion, the lattice will
behave like a system of hard spheres.
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Fig. 1. Exponential interaction potential. (a) a,b > 0, (b) a,b < 0, (c) when b is quite large.

Fig. 2. Cnoidal wave, dn2(2Kx)−E/K as a function of x, for k2 = 0.992 when k is the modulus.

We shall summarize the results. The equations
of motion given by [6] and [29],

m
d2xn
dt2

= a
(
e−brn − e−brn+1

)
, [31]

is called the Toda lattice (exponential lattice) equa-
tion, which is also written as

m
d2rn
dt2

= a
(
2e−brn − e−brn−1 − e−brn+1

)
. [32]

In terms of the dual lattice, by [26]

rn = −1
b

log
(
1 +

ṡn
a

)
[33]

we have the equations of motion

d

dt
log(a+ ṡn) =

b

m
(sn−1 − 2sn + sn+1) [34]

or

log
(

1 +
S̈n
a

)
=

b

m
(Sn−1 − 2Sn +Sn+1) [35]

where by [33] the relation between rn and ṡn is
given as

ṡn = a
(
e−brn − 1

)
. [36]

The periodic wave solution is given by [21], [36]
and [19] as (cnoidal wave, Fig. 2)

e−brn − 1 =
(2Kν)2

ab/m

{
dn2 2

(n
λ
± νt

)
K − E

K

}
[37]

with the dispersion relation which is given by [24] as

2Kν =

√
ab

m

/√
1

sn2(2K/λ)
− 1 +

E

K
[38]

where K and E are complete elliptic integrals

K =K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

,

E = E(k) =
∫ π/2

0

√
1− k2 sin2 θdθ. [39]

Thus I found the nonlinear lattice and its periodic
solutions at the same time.

Continuous limit. Sometimes it is seen that
the continuum approximation gives good results. In
this case it is convenient to use the operator rule

e±d/dnf(n) = f(n± 1). [40]

Then we see the simplified version a = b = m = 1 of
the equations of motion [32] can be written as

∂2r

∂t2
+
[
2sinh

(
1
2
∂

∂n

)]2

e−r = 0. [41]

If we straightly expand the left hand side in powers of
∂/∂n and neglect higher powers of r, we can rewrite
the above equation as(

∂

∂t
− 2sinh

1
2
∂

∂n
+

1
2
∂

∂n
r

)

×
(
∂

∂t
+ 2sinh

1
2
∂

∂n
− 1

2
r
∂

∂n

)
r = 0. [42]

Thus, for the wave advancing to the right, we have
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Fig. 3. Soliton, sech2(αn) as a function of αn.

(
∂

∂t
+ 2sinh

1
2
∂

∂n
− 1

2
r
∂

∂n

)
r = 0 [43]

and further expanding sinh,(
∂

∂t
+

∂

∂n
− 1

12
∂3

∂n3
− 1

2
r
∂

∂n

)
r = 0. [44]

If we change the units and signs, we can arrive at an
equation of the form

∂u

∂t
+u

∂u

∂x
+ δ2

∂3u

∂x3
= 0. [45]

This is the famous Korteweg-de Vries (KdV) equa-
tion originally derived to describe the shallow water
waves.16) They gave periodic solution which is similar
to the periodic wave given in the foregoing solution.
Besides they gave solution of the form (Fig. 3)

u= u∞ +A sech2(αx−βt) [46]

which is a solitary wave solution or soliton solution.
N. Zabusky and M. D. Kruskal17) studied the

KdV equation by computer experiment. They used
the cyclic boundary conditions and started from the
initial state such as

u(t= 0) =A cosπx. [47]

They found the wave split into a group of soli-
tary waves (solitons), each of which proceeded nearly
independently and after a while the wave recovered
the initial state.

If the wave consists of a small number of solitons
it will come back to the initial state after a time,
which is nearly equal to the least common multiple
of the recurrence times of the solitons.

Solitons. A soliton of the nonlinear lattice can
be thought as the limit of infinite wave length. It
leads to a soliton solution

Fig. 4(a). Overtaking collision when the difference in height
is remarkable (lower solution is absorbed and sent out).

Fig. 4(b). Overtaking collision when the difference in height
is small (heigher soliton gets lower, while lower soliton gets
higher and their roles are interchanged).

e−brn − 1 =
m

ab
β2 sech2(κn±βt)

with

β =

√
ab

m
sinhκ. [48]

The velocity of the soliton is

c=

√
ab

m

sinhκ
κ

[49]

which is larger for the soliton of larger height.
In a paper P. D. Lax wrote two-soliton state of

the KdV equation without any proof. But I found
a hint from it to rewrite [48] in the form12),18)

e−brn − 1 =
m

ab

d2

dt2
log cosh(κn−βt) [50]

with β determined by the equations of motion as

β =

√
ab

m
sinhκ. [51]

Then I found that two soliton state is given by
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(a) E = 1 (b) E = 256

Fig. 5. Surface of section for the Hamiltonian [55]. Poincaré mapping, Integrable case.

e−brn − 1 =
m

ab

d2

dt2
logψn

with

ψn =A cosh(κn−βt) +B cosh(µn− γt) [52]

where A, B, β and γ are determined from the equa-
tions of motion.

There are two cases. One is the head-on collision
of two solutions, given by

β =

√
ab

m
2sinh

µ

2
cosh

κ

2
, γ =

√
ab

m
2sinh

κ

2
cosh

µ

2

B/A= cosh
κ

2

/
cosh

µ

2
. [53]

The other case is for two solitons running in the same
direction:

β =

√
ab

m
2sinh

κ

2
cosh

µ

2
, γ =

√
ab

m
2sinh

µ

2
cosh

κ

2

B/A= sinh
κ

2

/
sinh

µ

2
. [54]

Integrability. Ford19) numerically examined
the integrability of the lattice with exponential inter-
action between particles. He took cyclic lattice of
three particles, and applied the Poincaré method
of mapping (surface of section) of trajectories in
the phase space. He found that the trajectories are
smooth and did not become erratic even if the energy
is raised extremely high, indicating that the lattice
was integrable (Fig. 5).

The Hamiltonian of a three-particle cyclic lat-
tice with exponential interaction can be written in

a dimensionless form as

H =
1
2
(P 2

1 +P 2
2 +P 2

3 )

+ e−(Q1−Q2) + e−(Q2−Q3) + e−(Q3−Q1) − 3. [55]

He applied the transformation

Qi =
3∑
j=1

Aijζj , Pi =
3∑
j=1

Aijηj

with

A=


 6−1/2 2−1/2 3−1/2

−(2/3)1/2 0 3−1/2

6−1/2 −2−1/2 3−1/2


 [56]

which diagonalizes the corresponding harmonic lat-
tice. Then, by rescaling as

ζ1 = 2
√

2q1, ζ2 = 2
√

2q2, t→ t/
√

3 [57]

he obtained the equations of motion

q̈1 = (4
√

3)−1
(−e2q2+2

√
3q1 + e2q2−2

√
3q1

)
q̈2 =

1
6
e−4q2 − 1

12
(
e2q2+2

√
3q1 + e2q2−2

√
3q1

)
. [58]

Ford numerically integrated [58] and had the
Poincaré mappings of the three-particle exponential
lattice. Fig. 5(a) is for the energy E=1, and Fig. 5(b)
is for E=256. He examined mapping up to E=56000,
and always he had smooth curves with no indication
of stochastic behaviour. Thus the numerical works
strongly suggested that the lattice with exponential
interaction is integrable. In other words, it admits
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the so-called third integral besides momentum and
energy.

These results were in strong contrast to the
behaviour of usual nonlinear system, which are in
almost all cases chaotic, non-integrable.

For instance since 1964, we had the so-called
Hénon-Heiles system,20) which is equivalent to a
cyclic lattice of three particles with the Hamiltonian

H =
1
2
(P 2

1 +P 2
2 +P 2

3 )

+
1
2
[
(Q1 −Q2)2 + (Q2 −Q3)2 + (Q3 −Q1)2

]
+

1
6
[
(Q1 −Q2)3 + (Q2 −Q3)3 + (Q3 −Q1)3

]
.

[59]

The second term on the right hand side is the har-
monic interaction and the third is the cubic nonlin-
ear term. After performing the transformations [56]
and [57], we obtain the equations of motion

q̈1 = −q1 − 2q1q2
q̈2 = −q2 − q21 + q22 . [60]

As easily seen,18) if we expand the right hand
side of [58] up to the second powers of q1 and q2, we
get [60].

But in both cases the trajectories are quite dif-
ferent. In the case of [55] they are entirely smooth
showing integrability of the exponential lattice. On
the contrary, the trajectories of [60] become chaotic
as shown in Fig. 6(a), (b) and (c) with increasing
energy E, indicating non-integrability of the lattice
with cubic nonlinearlity.

This is a very clear example of the transition
between integrable and non-integrable systems.

Conserved quantities. The equations of
motion of the cyclic three-particle exponential lat-
tice [55] can be written as

Ṗ1 =X3 −X1, Ṗ2 =X1 −X2, Ṗ3 =X2 −X3

Ẋ1 = (P1 −P2)X1, Ẋ2 = (P2 −P3)X2,

Ẋ3 = (P3 −P1)X3, [61]

where

X1 = e−(Q2−Q1), X2 = e−(Q3−Q2),

X3 = e−(Q1−Q3). [62]

From these equations we see that

(a) E = 0.0833

(b) E = 0.12500

(c) E = 0.16667

Fig. 6. Surface of section for the Hamiltonian [59]. Poincaré
mapping, Non-integrable case.

I1 = P1 +P2 +P3

I2 = P1P2 +P2P3 +P3P1 −X1 −X2 −X3

I3 = P1P2P3 −P1X2 −P2X3 −P3X1 [63]

are conserved quantities. I1 is the total momentum,
I2 is related to the total energy (E = (1/2)I2

1 − I2).
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I3 is the so-called third integral of motion, which is
not interpreted in terms of momentum and energy.
The existence of the third integral in this case was
proved by the numerical study of the preceding
section.

M. Hénon21) and H. Flaschka22) were stimulated
by the results of the numerical study performed by
Ford.19) Hénon proved that uniform cyclic exponen-
tial lattice has as many conserved quantities as the
number of particles in the lattice. If we write them
for the case of three particles, we get I1, I2 and I3 as
mentioned above.

In the same year, Flaschka independently proved
the same thing by a method, which we shall explain
in the next section.22)

Matrix equation of motion. We continue
dealing with cyclic exponential lattice of N particles.
We first rewrite the equations of motion23)

d2Qn
dt2

= e−(Qn−Qn−1) − e−(Qn+1−Qn) [64]

as

d

dt
e−(Qn+1−Qn) = −(Pn+1 −Pn)e−(Qn+1−Qn)

d

dt
Pn = e−(Qn−Qn−1) − e−(Qn+1−Qn). [65]

If we put

an =
1
2
e−(Qn+1−Qn)/2, bn =

1
2
Pn [66]

we have

ȧn = an(bn− bn+1), ḃn = 2(a2
n−1 − a2

n). [67]

For a cyclic lattice of N particles forming a ring

a0 = aN , b0 = bN [68]

the equations of motion can be written in the matrix
form as

dL

dt
=BL−LB. [69]

This is called the Lax formalism.24) It was first intro-
duced for the KdV equation, and afterwards used in
many cases. It is assumed that B is anti-symmetric.
In our case we have

L=




b1 a1 0 · · · 0 aN
a1 b2 a2 0 0
0 a2 b3 0
...

. . .
...

0 bN−1 aN−1

aN 0 · · · aN−1 bN



,

B =




0 −a1 0 · · · 0 aN
a1 0 −a2 0 0
0 a2 0 0
...

. . .
...

0 0 −aN−1

−aN 0 · · · aN−1 0



. [70]

Matrix components an and bn are functions of
the displacements and momenta, which are functions
of time. Therefore matrices L and B are functions of
time. We write them as L(t) and B(t), and the initial
values as L(0) and B(0). We also write eigenvalue of
L(t) as λ(t) to express the t dependence, though we
will find that λ is independent of t. If we write the
eigenfunction as ϕ(t) (N × 1 matrix), we have

L(t)ϕ(t) = λ(t)ϕ(t) [71]

where L(t) is a N ×N matrix. λ(t) are given as the
roots of the equation

det[L(t)−λ(t)I] = 0 [72]

where I is the N ×N unit matrix.
Since B is antisymmetric the matrix U defined

by

dU

dt
=BU, U(0) = 1 [73]

is unitary. That is we have

dU−1

dt
= −U−1B,

UU−1 = U−1U = I. [74]

Further, by [69], we have

d

dt
(U−1LU) = −U−1

[
BL− dL

dt
−LB

]
U = 0 [75]

so that

L(t) = U(t)L(0)U−1(t). [76]

Thus L(t) and L(0) are unitary equivalent.
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Now, in general, if A and B are square matrices,
we have

det(AB) = detA detB. [77]

That is, the determinant of a product of matrices is
equal to the product of their determinants. By [69]
and [77], we have

0 = det[L(t)−λ(t)I]

= det
{
U(t)[L(0)−λ(t)]U−1(t)

}
= det[L(0)−λ(t)I]. [78]

Comparing this result with det[L(0)−λ(0)I] = 0 we
get

λ(t) = λ(0),
dλ

dt
= 0. [79]

Therefore the eigenvalues are independent of time.
Thus it is shown that the motion in the lat-

tice conserves its spectrum (isospectral deformation).
Expanding [72], we get the eigenvalue equation

λNj + c1λ
N−1
j + c2λ

N−2
j + · · ·+ cN−1λj + cN = 0,

(j = 1,2, . . . ,N) [80]

where ck are functions of an and bn. From the above
simultaneous equations we can write ck as functions
of λj , which are time-independent. Therefore ck are
also conserved quantity. It is verified that ck are
essentially the same as Hénon’s constants of motion.
We may also obtain these constants of motion as

Jp = traceLp =
N∑
j=1

λpj , (p= 1,2, . . . ,N). [81]

Thus it is shown that cyclic exponential lattice of
N particles has the same number of conserved quan-
tities, which means that it is integrable.

Inverse scattering method. If we write
down the eigenvalue equation [71], we have

an−1ϕn−1 + bnϕn+ anϕn+1 = λϕn. [82]

This equation has its counter-part in the case of
the KdV equation.

Consider a soliton with negative value

u(x,t) = −κ2 sech2(κx− 4κ3t+ δ). [83]

This is an example of solutions of the KdV equation

ut− 6uux+uxxx = 0. [84]

Suppose we have a wave under appropriate boundary
conditions and develops with time according to the
above KdV equation. Then the eigenvalues λ of the
Schrödinger type equation

(
− ∂2

∂x2
+u

)
ψ = λψ [85]

stay independent of time, so that

dλ

dt
= 0. [86]

Equations [85] and [86] are the KdV version of the
discrete case [71] and [79].

Starting from this finding, Gardner, Greene,
Kruskal and Miura invented a method of solution to
the KdV equation,25) which solves the initial value
problem and called as the inverse scattering method.

For the case of discrete lattice, H. Flaschka23)

applied the inverse scattering method to the Toda
lattice. The motion in the infinite Toda lattice
was also solved by E. Date and S. Tanaka.26) Using
the theory of hyper elliptic integrals M. Kac and
P. van Moerbeke showed similar method to solve the
three particle cyclic lattice.27)

Probability distribution. We now turn to
another problem. Around 1940, that is when I gradu-
ated from the university, there were senior friends in
Japan studying thermodynamical problems such as
the distribution function of molecules in liquids and
possibility of phase transition to gases or solid state,
and so on. T. Nagamiya28) considered one dimen-
sional chain of particles where the total potential
is the sum of the potential V (xn − xn−1) between
adjacent particles. The distribution gn(x) of the n-th
particle is governed by

gn(x) =
∫ ∞

−∞
g(x−x′)gn−1(x′)dx′ [87]

with

g(x) =
e−βV (x)−βfx∫∞

−∞ e−βV (x′)−βfx′dx′
[88]

for the canonical ensemble (f = pressure).
Nagamiya calculated the distribution function

gn(x) for some special potentials, such as the har-
monic potential and hard sphere potential. The
results were to be compared with the distribution
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function of molecules revealed by the X-ray experi-
ments of these days.

Partition function. H. Takahashi29) invented
a simple method for treating the statistical mechan-
ics of one dimensional chain of N molecules. He
considered the configurational integral of the system
(β = 1/kT )

QN (xn) =
∫

· · ·
∫

x0<x1<···<xN

dx1 dx2 · · ·dxN−1

× e−β{V (x1)+V (x2−x1)+···+V (xN−xN−1)}. [89]

Instead of the variables x1,x2, . . . ,xN , we introduce

r1 = x1, r2 = x2 −x1, . . . , rN = xN −xN−1 [90]

and observe the Jacobian

∂(r1,r2, . . . ,rN )
∂(x1,x2, . . . ,xN )

= 1. [91]

Then we see that∫ ∞

0

QN (xN )e−βfxNdxN = [Q(β)]N [92]

where we have written Q(β) for

Q(β) =
∫ ∞

0

exp[−β{V (r) + fr}]dr [93]

which is the configurational part of the partition
function. By the standard statistical mechanical
argument we see that the average length of the sys-
tem is given as

l =
x̄N
N

= − ∂

∂f
kT logQ(β) [94]

and the energy per particle by

E =
1
2
kT − ∂

∂β
logQ(β). [95]

We see that the length l is always a single valued
function of the pressure, which means that no phase
change occurs in one dimensional system.

In classical mechanics, the Hamiltonian per par-
ticle is

H(p,x) =
1
2
p2 +V (x) + fx. [96]

If we write the total partition function as ζ(β), it is
given by

ζ(β) =
∫ ∞

−∞
dp

∫ ∞

−∞
dq exp[−βH(p,x)]

=
√

2π
β
Q(β). [97]

Exponential lattice. In the case of the expo-
nential lattice, we can use the simple expression

V (x) = e−x. [98]

We have

Q(β) =
∫ ∞

−∞
exp

[−β (e−x + fx
)]
dx. [99]

To perform the integration we put e−x = t, and get

Q(β) =
∫ ∞

0

e−βttβf−1dt= β−βf
∫ ∞

0

e−yyβf−1dy

= β−ρΓ(ρ) [100]

where Γ(ρ) is the gamma function of the order

ρ= βf. [101]

Thermodynamics. The Bethe anzatz was first
invented for quantum-mechanical one-dimensional
spin system, and extended to one-dimensional system
of particle interacting via a repulsive delta-function
potential. It was further developed by C. N. Yang
and C. P. Yang to the thermodynamical system with
given temperature and pressure.30)

Following N. Theodorakopoulos,31) the classical
limit of the Yang-Yang’s thermodynamical equation
written for the chemical potential µ is

1
2
p2 −µ− ε(p) +

2
β

∫ ∞

−∞
θ′(p− p′)e−βε(p

′)dp′ = 0

[102]

with the subsidiary condition

βf =
∫ ∞

−∞
e−βε(p

′)dp′ [103]

where f is used for the pressure to discriminate it
from momentum. In the above integral equation the
factor exp(−βε) is related to some kind of excitation,
and θ′(p) stands for the derivative of the two-body
scattering phase shift θ(p) for the interaction poten-
tial, and p denotes the relative momentum. In the
classical limit, and for the exponential interaction,
we use
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θ′(p) = −2log |p|. [104]

then the above equation is rewritten as

−βµ= −β p
2

2
+βε(p) + 2

∫ ∞

−∞
log |p− p′|e−βε(p′)dp′.

[105]

By setting

x= β1/2p, β1/2φ(x) = e−βε(p), ρ= βf,

ψ(x) =
∫ ∞

−∞
log

|x−x′|√
β

φ(x′)dx′ [106]

we have

e−βµ =
e−

1
2x

2
e2ψ(x)

√
βφ(x)

[107]

and

ρ=
∫ ∞

−∞
φ(x′)dx′. [108]

The meaning of the Yang-Yang equation [102] is
as follows: Consider that the scattering function θ(p)
is given by experiment. Then [102] is solved for ε(p),
under the subsidiary condition [103], which deter-
mines the chemical potential µ.

Solution. In order to have the solution φ(x),
we differentiate [107] with respect to x and obtain

φ′(x) +xφ(x) = 2φ(x)ψ′(x). [109]

This is nonlinear with respect to φ(x) for ψ(x) implic-
itly contains φ(x). M. Opper solved this equation.32)

The result can be written as

exp
[
−ψ(x) + iπ

∫ x

0

φ(x′)dx′
]

= C

∫ ∞

0

eixte−t
2/2tρ−1dt [110]

where the constant C is determined as

C = βρ/2/Γ(ρ) [111]

comparing the asymptotic behavior of both sides
of [110] for x→∞.

To show that φ(x) and ψ(x) given by [110]
satisfy [109], we introduce real functions R(x) and
J(x) by

C

∫ ∞

0

eixte−t
2/2tρ−1dt= C{R(x) + iJ(x)}

= C
√
R(x)2 + J(x)2 eiarctan(J(x)/R(x)) [112]

where

R(x) =
∫ ∞

0

cosxt e−t
2/2tρ−1dt,

J(x) =
∫ ∞

0

sinxt e−t
2/2tρ−1dt. [113]

Comparing the both sides of [110], we get

ψ(x) = − logC
√
R(x)2 + J(x)2,

ψ′(x) = −RR
′ + JJ ′

R2 + J2
,

φ(x) =
d

dx

1
π

arctan
J(x)
R(x)

=
1
π

RJ ′ −R′J
R2 + J2

, [114]

to see

φ′(x) +xφ(x) =
1
π

(RJ ′′ −R′′J) +x(RJ ′−R′J)
R2 + J2

+φ(x)ψ′(x). [115]

Since

J ′ =
∫ ∞

0

cosxt e−t
2/2tρdt [116]

by integrating partially we have

xJ ′ =
∫ ∞

0

d

dt
(sinxt)e−t

2/2tρdt

= sinxt e−t
2/2tρ

∣∣∣∞
0

−
∫ ∞

0

sinxt
d

dt

(
e−t

2/2tρ
)
dt

= −
∫ ∞

0

sinxt e−t
2/2
(−tρ+1 + ρtρ−1

)
dt

=
∫ ∞

0

sinxt e−t
2/2tρ+1dt− ρJ

= −J ′′ − ρJ. [117]

Similarly we have

xR′ = −R′′ − ρR. [118]

So that

RJ ′′ −R′′J +x(RJ ′ −R′J) = 0 [119]

and [109] is satisfied.
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Therefore the solution φ(x) and ψ(x) of the
Yang-Yang equation [110] for the exponential lat-
tice is given by [114] in terms R(x) and J(x). Then
the chemical potential µ for each particle is given
by [107].

Chemical potential. However, since in [107]
the chemical potential µ is independent of x, we may
put x = 0 in the right hand side of this equation to
estimate µ, so that

e−βµ =
e2ψ(0)

√
βφ(0)

, [120]

with

ψ(0) =
∫ ∞

−∞
log

(|x′|/√β
)
φ(x′)dx′. [121]

Following the standard theory of classical statis-
tical mechanics, we see that e−βµ is nothing but the
partition function ζ(β) calculated as [97] and [100]:

ζ(β) =
√

2π
β
Q(β), Q(β) = β−ρΓ(ρ). [122]

On the other hand, we have J(0) = R′(0) = 0,
and from [113] and [114]

eψ(0) =
Γ(ρ)
βρ/2

(∫ ∞

0

e−t
2/2 tρ−1dt

)−1

=

√
2/π
βρ/2

∫ ∞

0

e−t
2/2 tρdt

=
β−ρ/2

2ρ/2−1

Γ(ρ)
Γ(ρ/2)

,

φ(0) =

∫ ∞

0

e−t
2/2 tρdt

π

∫ ∞

0

e−t
2/2 tρ−1dt

=
1√
2π

1
2ρ−2

Γ(ρ)
[Γ(ρ/2)]2

. [123]

Therefore [120] gives

e−βµ =
√

2π
β
β−ρΓ(ρ). [124]

Thus we have reproduced the formula ζ(β) = e−βµ.
Now, our problem is to clarify the meaning of

ψ(0) and φ(0) by identifying them to well-known sta-
tistical mechanical quantities such as the phase inte-
gral or some part of partition function.

Binary interaction. In [120] the factor e2ψ(0)

looks indicating pairing of two factors of ψ(0), which
seems to come from the pair of interaction potentials
giving rise to

1
2
(e−x+ fx) +

1
2
(e−y + fy)

= e−(x+y)/2 1
2

[
e(y−x)/2 + e−(y−x)/2

]
+
f

2
(x+ y)

= e−ξ cosh
η

2
+ fξ

= e−[ξ−ξ̄(η)] + f [ξ− ξ̄(η)] + fξ̄(η) [125]

with

eξ̄(η) = cosh(η/2),

ξ =
x+ y

2
, η = y−x. [126]

The transformation from (x,y) to (ξ,η) is a canonical
transformation,

∂(ξ,η)
∂(x,y)

= 1, dxdy = dξ dη. [127]

Integrating we find the formula∫ ∞

−∞
exp

[−β(e−ξ + fξ
)]
dξ

=
1

ζQ(β/2)

(∫ ∞

−∞
exp

[
−β

2
(e−x+ fx)

]
dx

)2

[128]

where (ρ= βf)

ζQ(β/2) =
∫ ∞

−∞

dη

coshρ(η/2)

= 2ρ
[Γ(ρ/2)]2

Γ(ρ)
. [129]

Here I have used a special notation ζQ, which inci-
dentally appears later again.

In [128] the phase integral at the reciprocal tem-
perature β is related to the square of the integral
at β/2, or rather to the integral for one half of the
potential, 1

2 (e−x+ fx),

Q(β/2) =
∫ ∞

−∞
e−

β
2 (e−q+fq)dq

=
( β

2

)−ρ/2
Γ(ρ/2). [130]

From the above consideration, it seems clear
that ψ(0) has something to do with Q(β/2) above,
though they look quite different from each other.
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Final result for ψ(0). Since ψ(0) is related
to the phase shift θ(p) of binary collision, we turn to
dynamics rather than sticking to the configurational
integral Q(β).

For the binary system interacting with the expo-
nential interaction, we have

1
2

(
dx

dt

)2

+ e−x = E. [131]

Integrating we get

t=
∫ x dx√

2(E− e−x)

=
1√
2E

log
√
E+

√
E− e−x√

E−√
E− e−x

. [132]

This is equivalent to

x= 2log
cosh

(√
E/2t

)
√
E

,

p=
dx

dt
=
√

2E tanh
(√

E/2 t
)
. [133]

We now introduce the canonical transformation
(x,p) → (Q,P ) by setting

√
2E = P ,

√
2E t=Q:

x= 2log
cosh(Q/2)
P/

√
2

, p= P tanh(Q/2),

∂(x,p)
∂(Q,P )

= 1, dxdp= dQdP. [134]

We see

1
2
p2 + e−x =

1
2
P 2 [135]

which indicates that P is the momentum responsible
for the binary collision. The lattice Hamiltonian

H =
p2

2
+ e−x+ fx [136]

is then separated as

H =HP +HQ,

HP =
P 2

2
− 2f log

(
P/

√
2
)
,

HQ = 2f log(Q/2). [137]

Therefore we have the partition function ζ(β)

ζ(β) = ζP (β)ζQ(β), ρ= βf, [138]

with

ζP (β) =
∫ ∞

0

dP e−βHP =
1
2ρ

∫ ∞

0

e−βP
2/2P 2ρdP

=
√

2π
β

β−ρ

22ρ

Γ(2ρ)
Γ(ρ)

,

ζQ(β) =
∫ ∞

−∞
dQe−βHQ =

∫ ∞

−∞

dQ

cosh2ρ(Q/2)

= 22ρ [Γ(ρ)]2

Γ(2ρ)
. [139]

Changing β to β/2 (and ρ= βf to ρ/2), we see

ζP (β/2) =
√
π

β

β−ρ/2

2ρ/2−1

Γ(ρ)
Γ(ρ/2)

,

ζQ(β/2) = 2ρ
[Γ(ρ/2)]2

Γ(ρ)
. [140]

Comparing [123] and [140], it seems quite nat-
ural to think that eψ(0) and 1/φ(0) are related to
ζP (β/2) and ζQ(β/2) by the relation

ζP (β/2) =
√
π

β
eψ(0), ζQ(β/2) =

√
8
π

1
φ(0)

. [141]

Among these, ζP (β/2) is the phase integral
for HP in [137], and according to [106], ψ(0) is the
integral [121] over a function of the phase shift of the
binary collision. Therefore the first equation of [141]
must be explained along this line. The physical mean-
ing of ζQ is not yet clear.

Concluding remark. If we replace ψ(0) and
φ(0) in [120] by ζP (β/2) and ζQ(β/2) of [141], and
e−βµ by the phase integral ζ(β), we have

ζ(β) =

√
β

8π
ζQ(β/2)[ζP (β/2)]2 [142]

or, using [138], we get

ζ(β) =

√
β

8π
1

ζQ(β/2)
[ζ(β/2)]2. [143]

The last equation gives the partition function ζ(β)
at the temperature β, as a function of the partition
function ζ(β2 ) at β

2 , provided if ζQ(β2 ) is known.
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