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Review

Formation of black hole and emission of gravitational waves
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Abstract: Numerical simulations were performed for the formation process of rotating black
holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The
nature of gravitational waves from a test particle falling into a Kerr black hole as well as the
development of 3D numerical relativity for the coalescing binary neutron stars are discussed.
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1. The existence of black holes. In 1967,
the first pulsar(pulsating radio source) was found. At
present the number of the observed pulsars is about
1700 and its period of the pulse ranges from 1.56ms
to about 10 s.1) The pulsar is identified as the neutron
star from the following argument. Let us assume
that the period of the pulsar is due to the rotation
of the unknown object of mass M and radius R. We
do not know M and R at the moment but we know
that the gravitational force should be larger than the
centrifugal force for the equilibrium. This requires

GM

R2
> RΩ2, [1]

where G and Ω are the Newton’s gravitational con-
stant and the angular frequency of the pulsar, re-
spectively. Equation [1] is rewritten as

ρ̄
4π
3

=
M

R3
>

Ω2

G
, [2]

where ρ̄ is the mean density of the unknown object.
For the shortest period of 1.56ms, Ω = 4 × 103 s−1.
Then ρ̄ is larger than 5.8 × 1013 gcm−3. In such
extremely high density matter, an electron is eas-
ily captured by a proton to be a neutron so that
the matter in the pulsar consists of mainly neutrons.
This is the reason why the pulsar is identified as the
neutron star. The radius of the neutron star should
be small and is considered to be about 10 km.
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Theoretically the mass of the neutron star can
be determined as a function of the central density
if the equation of state of the neutron star matter
is known (i.e. the relation between the pressure and
the density). In general, the mass first increases with
the increase of the central density and then begins
to decrease with a maximum value for each equation
of state. Although the equation of state in such high
density matter is not known well, various models of
the equation of state give the maximum mass ranging
from 0.7 to about two times the mass of the sun.
Observationally masses of several neutron stars are
determined and their values are about 1.4 times the
mass of the sun.1)

The existence of the maximum mass of the neu-
tron star is definite? Since we do not know the true
equation of state of the neutron star matter, one may
think that the maximum mass might be infinite in
principle. However there exists a theoretical upper
limit of the maximum mass of the neutron star ir-
respective of the equation of state of the high den-
sity matter. Assume that: 1) The Einstein equation
which describes the equilibrium structure of the neu-
tron star is correct. 2) The sound velocity of the mat-
ter is smaller than the light velocity. 3) The equation
of state for low density matter is known. Then it is
proved that the maximum mass of the neutron star
is at most 3.2 times the mass of the sun irrespective
of the equation of state.2), 3) Therefore if a certain
compact object has the mass larger than 3.2 times
the mass of the sun, one can say definitely that the
object is not a neutron star. The mass of the object
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is too large so that the gravitational collapse starts
and would not stop. In short, the object would be
a black hole. At present there exist about eighteen
such black hole candidate X-ray stars4) since their
mass is larger than 3.2 times the mass of the sun.

More massive black hole candidates exist. For
example by examining the orbits of the stars near the
center of our galaxy, Ghez et al. (2003)5) suggested
the existence of the black hole of mass about 4 ×
106 times the mass of the sun in the center of our
galaxy. The other method to identify a black hole
candidate is to measure the velocities of the stars
near the central part of the extragalaxies. From the
size of the spatial distribution of the stars there and
the measured velocities, the existence of very massive
black hole is suggested. The number of such black
hole candidates at present is about 40 and the mass
of the black holes ranges from 106 to 109 times the
mass of the sun.6)

2. The final state of the gravitational col-
lapse. Let us consider a neutron star of mass near
the maximum mass. If the extra mass falls into this
neutron star from outside, the mass will exceed the
maximum possible mass. Since the mass is too large
for the equilibrium, the collapse of the neutron star
begins and the size of the star decreases. The grav-
ity increases so much that it becomes difficult for any
matter to escape from the star. Finally the trapped
surface will be formed. Here from the trapped sur-
face even the outgoing light rays can not expand due
to the strong gravity. Penrose and Hawking proved
that under such a situation the space-time should
have a singularity eventually under the plausible con-
ditions on the pressure and the energy density of the
matter.7) Here singularity means that the space time
is incomplete and the Einstein equations are violated
there. Therefore the formation of the singularity is a
crisis of the Einstein’s theory of gravity since such a
collapse could happen in reality. Penrose then pro-
posed the “cosmic censorship hypothesis”; the singu-
larity in the collapse should be covered by the event
horizon in nature so that we can not observe the sin-
gularity of the space time in principle.8) This means
that inside the event horizon there exists a singu-
larity where the Einstein equations are violated but
the effect of the violation can not reach outside the
event horizon where we are living. Therefore as far
as the space time outside the event horizon is con-
cerned, the Einstein theory is not violated and is a
self-consistent effective theory.

What is the final ultimate fate of the gravita-
tional collapse such as in the collapse of the neutron
star of mass exceeding the maximum one? In such
a collapse at first the matter density and the space
time structure would rapidly change and the gravita-
tional waves would be emitted. However eventually
we expect that the space time would approach the
stationary state. Under the cosmic censorship hy-
pothesis (; the assumption that all singularities in
space time are hidden behind the non-singular event
horizon) Hawking proved that such a stationary final
state is an axially symmetric solution to vacuum Ein-
stein equations7) and then Israel (1967)9) and Carter
(1971)10) proved that they form discrete continuous
families each depending on at most two parameters.
Robinson (1975) proved that the Kerr solution is the
unique one of the Israel-Carter theorem.11) Here the
Kerr solution is characterized by two parameters; the
massM and the angular momentum per unit mass a.
Therefore two parameters of the Israel-Carter theo-
rem are the mass and the angular momentum of the
Kerr solution. Here we should notice that the Kerr
solution has a black hole structure (i.e. the singular-
ity is covered by the event horizon) only when a is
smaller than GM/c where G and c are the Newton’s
gravitational constant and the light velocity, respec-
tively.

However, if we do not adopt the cosmic cen-
sorship hypothesis, many other stationary solutions
to vacuum Einstein equations are found. Especially
Tomimatsu and Sato (1973) found a series of solu-
tions characterized by the mass, the angular momen-
tum, and the deformation parameter.12) Their solu-
tions have naked singularities, that is, they do not
have the black hole structure. This means that the
singularities of the space time exist outside the event
horizon so that we can observe the singularities in
principle. In the Kerr solution also, the singular-
ity is naked if a is larger than GM/c. If the cos-
mic censorship is true, all the black holes in galactic
X-ray sources and the center of the galaxies should
be Kerr black holes with a < GM/c. They cannot
be naked singularities like in Tomimatsu-Sato solu-
tions.12) Here the natural question arises; in the real
gravitational collapse, the Kerr black hole is always
formed irrespective of the initial conditions? If, for
example, the final state were one of the Tomimatsu-
Sato solution, the Einstein’s theory of gravity should
be modified.

Let us consider a star of mass M and angular
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momentum J . We can define a non-dimensional an-
gular momentum q by

q ≡ J

MGM/c
=

a

GM/c
[3]

Then if this star becomes a black hole as a result of
gravitational collapse, q should be smaller than unity
under the cosmic censorship hypothesis. Since the
definition of q contains only the angular momentum
and the mass of the system other than the physical
constants, we can argue the value of q for any sys-
tems even if it will not evolve to a black hole. For
example, the sun will not be a black hole while q is
0.18. For rapidly rotating massive stars which are
believed to evolve to black holes, the value of q is
usually greater than unity. Then what will happen
when q > 1? Under the cosmic censorship, if all the
matter of the star collapses to be a black hole, the
value of q is too large. In this case, is the naked
singularity formed finally? Is a Kerr black hole in
reality formed irrespective of the initial conditions
even when q < 1? To answer these questions, we
needed the development of the method to obtain the
numerical solutions of the Einstein equations for non-
spherical dynamical space time.

3. Numerical relativity. Before 1976, it
was difficult to compute the dynamical evolution of
the non-spherical space time obeying the Einstein
equations numerically due to the low power of the
computer as well as the lack of the good formalism
and the good numerical method. The basic variables
in the Einstein equations consist of the density of the
fluid and the velocity of the fluid as well as ten com-
ponents of the metric tensor. Four components of
the metric tensor are coordinate degrees of freedom.
In general relativity, one can adopt any time and
spatial coordinates so that these four components
of the metric tensor express this freedom explicitly.
However in numerical simulations, the choice of the
coordinates is crucial for non-crushing computations.
Secondly, we give initial data of the density and the
velocity of the fluid as well as the gravitational waves.
Then we have four equations to determine the ini-
tial data of the metric tensor. From Einstein equa-
tions we have four time dependent equations to de-
termine the density and the velocity of the fluid as
well as twelve time dependent equations to deter-
mine six components of the metric tensor and their
∗) For details of the formalism and the numerical method,
see refs. 15), 16).

time derivatives. Usually the coordinate conditions
are expressed by the elliptic type partial differential
equations so that we have another four equations to
determine four components of the metric tensor.

In 1976, Smarr first performed the numerical
simulations of the collision of two black holes.13) This
is the first numerically generated non-spherical space
time obeying the Einstein equations. He solved the
vacuum space time outside the event horizon of two
black holes. What our group tried to solve was the
collapse of the axially symmetric rotating stars lead-
ing to the formation of black holes so that the matter
density is not zero in our case. The first subject we
attacked was the collapse of a spherically symmetric
star.14) In this first study we tried to find a numerical
method which can be easily extended to axially sym-
metric cases. As a result we found the importance of
numerical treatment of the regularity conditions at
the origin. In the spherical polar coordinate (r, θ, φ),
the origin is r = 0 with θ and φ being arbitrary. This
means that the point in the real space does not have
one to one correspondence to the coordinate point.
The regularity condition guarantees that these ap-
parently different coordinate points correspond to a
single point in the real space. Since we are solving
the general space time, if we lose the regularity con-
dition numerically, the space time we are solving be-
comes a different one from what we like to simulate.
Therefore to guarantee the regularity condition nu-
merically is extremely important. This led us to the
use of the regularized variables to ensure the regu-
larity automatically. We developed these regularized
variables to axially symmetric cases where we require
the regularity condition on the symmetry axis. After
many trials we completed a numerical code for the
first time.∗)

Using the formalism and the numerical method
we developed, we performed many numerical simu-
lations of the collapse of axially symmetric rotating
stars.15)–19) We summarize here the main results. We
use the cylindrical coordinates (R, φ, Z). The system
is assumed to be axially symmetric and plane sym-
metric about Z = 0 plane. Units of mass, length and
time are taken as

M = Mi, L =
GMi

c2
, T =

GMi

c3
[4]

where Mi is the initial mass of the collapsing star.
For example for Mi= ten times the mass of the sun,
L = 15km and T = 5 × 10−5 s.
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We have simulated three types of collapsing ro-
tating stars.

Type A (Formation of Super Massive Black
Hole). The initial radius of the star r0 is taken to be
14.5. At t = 0, the star is falling radially with the
free fall velocity. The initial angular velocity (Ω) is
given by

Ω = Ω0 exp
(
−2R2

r20

)
[5]

where Ω0 is a constant. The equation of state is

p =
1
3
ρε [6]

where p, ρ and ε are the pressure, the density and
the internal energy per unit mass, respectively.

Type B (Formation of Super Massive Black
Hole). The initial conditions are the same as Case
A except that the initial angular velocity is more
strongly centralized as

Ω = Ω0 exp
(
−10R2

r20

)
[7]

Type C (Mi=ten times the mass of the sun).
The initial density distribution is taken as

ρ = 3 × 1013 gcm−3 exp
(
−R

2 + Z2

4.5

)
. [8]

The equation of state is given as

p =
1
3
ρε for ρ ≤ ρ∗ ≡ 3 × 1014 gcm−3

= (ρ− ρ∗)ε+
1
3
ρ∗ε for ρ > ρ∗ [9]

Typical results of the numerical simulations are
shown in Fig. 1a and b. A50 in the caption of Fig. 1a
means the simulation of Type A with the value of
nondimensional angular momentum q = 0.5. In
Fig. 1a the contour lines show the density and the
arrows show the velocity vector. QMAX and VEL-
MAX mean the maximum density and the maximum
velocity, respectively. We are showing only Z ≥ 0.
The density and the velocity for Z < 0 can be ob-
tained from plane symmetry. The time in Fig. 1a is
0.287 in our unit explained before and is near the ini-
tial stage. The time in Fig. 1b is 18.6 and is near the
final stage of A50. The dashed line shows the appar-
ent horizon, that is, even the outgoing light rays can
not expand from this surface. The general theorem
tells us that the event horizon exists outside the ap-
parent horizon. Even if one may emit the light ray

Fig. 1a. Contour lines of the density ρ at t = 0.287 for A50.
We show only the density for Z > 0. The density for Z <
0 is obtained from the symmetry with respect to Z = 0

plane. Each line corresponds to ρ = QMAX · 10−
n
2 for

n = 1, 2, · · ·, 11. QMAX is shown in the figure. Arrows
show the velocity vector. The maximum of the vector is
shown as VELMAX in the figure. (from ref. 17))

Fig. 1b. Contour lines of the density ρ at t = 18.6 for A50.
The dashed line shows the apparent horizon. From this
surface even the light rays can not expand. The general
theorem shows that the event horizon exists outside the ap-
parent horizon. Even if one may emit the light ray outward
from the point inside the dashed line, the light will never
reach us living on the earth. This means that a black hole
is formed. (from ref. 17))

outward from the point inside the dashed line, the
light will never reach us living on the earth. We see
almost all the matter is inside the horizon so that
the rotating black hole is formed in this model A50.

Fig. 2a shows the density contour at Time=11.5
of model A105. We see some low density matter
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Fig. 2a. Contour lines of the density ρ at t = 11.5 for A105.
(from ref. 17))

Fig. 2b. Contour lines of the density ρ at t = 17.0 for A105.
(from ref. 17))

near the equator is expanding but the main part of
the star is collapsing. In Fig. 2b, the dashed line
shows the apparent horizon so that the black hole
is formed. Some of the low density disk like mat-
ter is expanding but nothing peculiar is happening
outside the apparent horizon. This suggests that the
naked singularity is not formed. Fig. 3a–d show the
evolution of Model A146. The result is completely
different from two models before. The apparent hori-
zon is not identified but the formation of the jet is
seen in Fig. 3d. From these numerical results, we
can say that there is a critical value of qc ∼ 1 for the
formation of the apparent horizon in this Type A.

For Type B, there also exists qc ∼ 0.92 while
qc ∼ 0.86 for Type C. These three types of the col-
lapse are different from each other in their equation
of state, the rotation law and the initial density dis-
tribution. However, the critical value of qc for the
formation of the black hole is almost the same. In
all the models in which the black hole is formed,
nothing peculiar seems to happen outside the event
horizon. If we remember that the singularity of the
Kerr black hole is hidden by the event horizon for
q < 1, our numerical simulations support the cosmic
censorship hypothesis.20)

After our simulations, Stark and Piran (1985,
1986) performed five series of numerical simulations
similar to ours and found that qc ranges from 0.8 to
1.2.21), 22) Shibata (2000) also obtained the similar re-
sults23) and Sekiguchi and Shibata (2004) generalized
the criterion by defining q as the effective q parame-
ter in the stellar central region24) and confirmed that
qc is ∼ 1. Therefore the results first obtained by our
group are consistent with later simulations.

4. The gravitational radiation from the
black hole. In the dynamical space time such as
the collapse of the rotating star, the gravitational
waves are emitted. Smarr (1976) first numerically
computed the amount of the gravitational waves for
the two black hole collision13) while Stark and Pi-
ran (1985) did for their formation of rotating black
holes.21) In these two types of simulations the black
holes were formed so that the variation of the space
time was very large. We expected that the amount
of the emitted gravitational waves was also large but
their results showed that they were very small and
at most ∼ 10−3M where M is the mass of the sys-
tem. The key factor for this unexpected result is the
symmetry of the system. Let us consider N particles
rotating in the same circle with a regular equi-angle
interval around the black hole.25) It is found that the
luminosity of the gravitational wave decreases ex-
ponentially as a function of N . For N → ∞, the
system becomes an axially symmetric rotating ring
and the luminosity is zero. It is known that a rotat-
ing ring does not emit the gravitational wave if its
radius does not change. Physically each element of
the ring does emit the gravitational waves but their
phase cancels out due to the phase cancellation ef-
fect. Therefore the main reason for the weak emitter
of the gravitational waves in Smarr’s simulation as
well as Stark and Piran’s simulation seems to be the
axial symmetry of the system. For non axially sym-
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(a)

(b)

(c)

(d)

Fig. 3. Contour lines of the density ρ for A146 at various time. (from ref. 17))

metric collapse we expect the strong emitter of the
gravitational waves. However the power of the com-
puter was not enough for simulations of non axially
symmetric collapse in 1980’s.

Observationally, on the other hand, Hulse
and Taylor found in 1974 the first binary pulsar
PSR1913+16.26) This binary pulsar is expected to
coalesce in 300 million years from now on due to
the emission of the gravitational waves. In the fi-
nal phase of the coalescence, the strong gravitational
waves will be emitted since the system is non ax-
ially symmetric. Theoretically the binary pulsar is
formed as a result of the evolution of the binary mas-
sive stars. If the mass of these stars is large enough
for the formation of black holes, it is possible that
the binary black hole system is formed instead of
the binary neutron star.27) Therefore the coalescence
of binary black holes is also possible theoretically al-
though observationally its existence is not confirmed.

Since the full numerical simulation for such a
non axially symmetric coalescence process was not
possible at that time, we tried to mimic the process

by a test particle of mass µ falling into a Kerr black
hole of mass M and the specific angular momentum
a. If µ � M , we can consider the effect of the en-
ergy and momentum tensor of the test particle as
the perturbation to the Kerr black hole space time.
Considering ε = µ/M � 1 as a smallness parame-
ter, we can linearize the Einstein equations known
as nonlinear differential equations. In this approxi-
mation the strong gravity and the fast motion of the
source is taken into account but the non-linearity of
the system is sacrificed.

There are two methods for the perturbation of
the black hole space time. First we can perturb the
metric tensor itself. Then using the tensor harmonics
and the Fourier expansion with respect to time with
the angular frequency ω, we have the radial equation
with the source term due to the test particle orbiting
the black hole. This radial equation is a second order
ordinary differential equation with respect to the ra-
dial coordinate r so that it is easily solved under the
appropriate boundary condition. From the solution,
we can determine the amplitude of the gravitational
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waves for the angular frequency ω.
The above method is, however, applicable only

for a = 0 case. In this case, the space time is spheri-
cally symmetric and is called as a Schwarzshild black
hole. For a �= 0, the space time is not spherically
symmetric so that the tensor harmonics expansion
of the metric tensor is not appropriate. However, for
the perturbation of the Weyl tensor,∗∗) Teukolsky
(1973) showed that we can obtain the radial equation
similar to the spherically symmetric case which is the
second order ordinary differential equation with re-
spect to the radial coordinate of the Kerr metric.28)

This equation is called the Teukolsly equation. The
Teukolsky equation is similar to the Schroedinger
equation and we can express its form symbolically
as

d2ψ

dr2
+ F (r)

dψ

dr
+ V (r)ψ = S(r) [10]

where we call V (r) and S(r) as the potential term
and the source term, respectively.

If we treat only the perturbation in the vacuum,
the Teukolsky equation has no problem. However if
we consider the space time perturbed by a test par-
ticle falling into a black hole, the Teukolsky equa-
tion has two difficulties: 1) The potential term has
a long range nature so that the asymptotic behav-
ior is not good for numerical computations. 2) The
source term diverges like r3.5 for r → ∞ so that it is
difficult to obtain the accurate result numerically.

In the case of the metric perturbation, the ra-
dial equation does not have such difficulties so that if
we can perform the metric perturbation of the Kerr
metric such difficulties will not exist. Inspired by
these considerations, Sasaki and Nakamura (1981)
first considered the perturbation of the Weyl ten-
sor for the spherically symmetric space time.29) In
the metric perturbation of the spherically symmet-
ric space time, two kinds of perturbation equations
are known depending on the parity of the tensor har-
monics. The odd parity case is called the Regge-
Wheeler equation (1957)30) while the even parity
case is called the Zerilli equation (1970).31) Both the
Regge-Wheeler and the Zerilli equations have short
range potentials and converging source terms.32)

While the perturbation of the Weyl tensor for
the spherically symmetric space time is known as

∗∗) The Weyl tensor is the traceless part of the Riemann ten-
sor. While the Riemann tensor consists of the second deriva-
tive of the metric tensor and expresses the curvature of the
space time geometrically and the tidal force physically.

Bardeen-Press-Teukolsky equation (BPT equation)
33) which has a long range potential and a diverg-
ing source term. Sasaki and Nakamura noticed the
transformation found by Chandrasekhar and De-
tweiler (1975)34) such that the sourceless BPT equa-
tion can be transformed to the sourceless Regge-
Wheeler equation. They performed this transfor-
mation to the BPT equation with the source term
and obtained the Regge-Wheeler equation with the
new source term derived from the source term of
the BPT equation. Since the BPT equation con-
tains both even and odd parity modes of the gravi-
tational waves, the derived Regge-Wheeler equation
has both even and odd parity modes and we called
the new equation as the generalized Regge-Wheeler
equation. If we use the generalized Regge-Wheeler
equation, we do not need to solve the Zerilli equation.
What Sasaki and Nakamura next tried was to find
the transformation of the Teukolsky equation with
source terms for the Kerr black hole to the Kerr black
hole version of the generalized Regge-Wheeler equa-
tion which was not known. The requirement for the
new transformation is; 1) The potential of the new
equation is a short range one. 2) The source term is
converging. 3) For a = 0, the new equation agrees
with the generalized Regge-Wheeler equation. Af-
ter many trials, Sasaki and Nakamura (1982) finally
found the required equation which is now called the
Sasaki-Nakamura equation.35), 36)

Now we can compute the gravitational waves by
a particle falling into a Kerr black hole. The impor-
tant point here is that this computation may mimic
the simulation of the coalescing binary black holes
and give us the physical insight of the results. The
gravitational waves emitted by a particle falling into
a black hole is characterized by the energy E and
the angular momentum Lz per unit mass of the test
particle as well as a of the black hole. We usu-
ally use the units of c = G = M = 1, so that
E, Lz and a are in units of c2, GM/c and GM/c,
respectively. We consider E = 1 case so that the
particle velocity is zero at r = ∞. First we show
the results for a = 0.37), 38) In Fig. 4 we show the
wave pattern of the gravitational wave emitted by
a test particle falling into a Schwarzshild black hole
(a = 0) as a function of the retarded time t − r∗

where r∗ = r+ 2M ln(r/2M − 1). h+ is the plus po-
larization mode of the gravitational wave. Since the
wave amplitude is in proportion to µ and decreases
as 1/r we show rh+/µ in the figure. Fig. 4a–d cor-
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Fig. 4. The wave pattern of the gravitational wave emitted by a test particle falling into a Schwarzshild black hole (a = 0) as
a function of the retarded time t− r∗ where r∗ = r +2M ln(r/2M − 1). h+ is the plus polarization of the gravitational wave.
Since the wave amplitude is in proportion to µ and decreases as 1/r we show rh+/µ in the figure. Fig. 4a–d correspond to
Lz = 0, 2, 3 and 3.9, respectively. (from ref. 16))

Table I.

case ∆E/(µ/M)µc2 µ → M Dim Reference

a = 0, Lz = 0 0.0105 0.065% 2D 32)

a = 0, Lz = 3.9 0.5 3.1% 3D 37)

a = 0, Lz = 2(ring) 0.0007 0.0044% 2D 16)

a = 0.99, Lz = 0, θ = 0 0.0175 0.1% 2D 35), 36)

a = 0.99, Lz = 0, θ = π/2 0.0445 0.28% 3D 40)

a = 0.99, Lz = 2 1.5 9.4% 3D 41)

respond to Lz = 0, 2, 3 and 3.9, respectively.∗∗∗)For
Lz = 3.9, the change of the angle ∆φ ∼ 2π, so that
this may mimic the coalescence of the binary black
hole. As shown in Table I, the energy radiated in this
case is EGW = 0.5µ/Mµc2. If we extrapolate this to
µ→M , the efficiency EGW/M becomes 3.1%. Since
this case is non axially symmetric, the efficiency is
large as we expected. Fig. 5 shows the wave forms
emitted by a ring of Lz = 2.0 (a) and Lz = 3.9 (b).
The wave form for Lz = 2.0 (a) resembles that of
the wave form of the rotating collapse calculated by
Stark and Piran (1985).21) Moreover the very low ef-
ficiency shown as a = 0, Lz = 2(ring) in Table I is

∗∗∗) For this case, Detweiler and Szedenits (1979)39) also
computed the energy using BPT equation with the integration
by parts.

also similar. Physically in the rotating collapse of the
star to a Kerr black hole, the star becomes the oblate
spheroidal shape due to the rotation. The central
main part of the spheroid forms the black hole like
space time first. This process does not contribute
much to the gravitational waves. Then the remain-
ing ring like part falls down to the newly formed Kerr
black hole. This ring like part mainly contributes to
the emission of the gravitational waves. This is the
physical reason why the perturbation calculation and
the full numerical simulation give almost the same
wave form and the efficiency of the energy radiated
as the gravitational waves.

In the case of the Kerr black hole (a �= 0), even
if the angular momentum is zero, the particle orbit
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Fig. 5. The wave forms emitted by a ring of Lz = 2.0 (a)
and Lz = 3.9 (b). (from ref. 16))

falling in the equatorial plane is different from that
falling along the symmetry z-axis.40) This is due to
the effect of dragging of the inertial frame of the Kerr
black hole. In reality the wave forms from them are
different. Fig. 6 shows the gravitational wave forms
from a particle with zero angular momentum falling
into the Kerr black hole a = 0.99 (the solid line) and
the Schwarzshild black hole a = 0 (the dashed line).
For a = 0.99, after the initial burst of the radiation
we see the damped oscillation. This damped oscilla-
tion is the very characteristic of the black hole called
the quasi normal mode of the black hole whose fre-
quency is a complex number. The real part and the
imaginary part of the quasi normal mode depend on
the mass M and the angular momentum a of the
black hole. From the comparison of the solid and
the dashed lines, we see the real part increases and
the imaginary part decreases with the increase of a.
If we observe the quasi normal mode, we can deter-
mine the mass and the angular momentum of the
black hole.

Let us consider the particle with angular mo-
mentum falling into the Kerr black hole in the equa-

Fig. 6. The gravitational wave forms from a particle with
zero angular momentum falling into the Kerr black hole
a = 0.99 (the solid line) and the Schwarzshild black hole
a = 0 (the dashed line). (from ref. 16))

Fig. 7. The gravitational wave forms for a co-rotating and a
counter-rotating case. The solid line shows a = 0.85 and
Lz = 2.6 case while the dashed line does a = 0.85 and
Lz = −2.25 case. (from ref. 16))

torial plane.41)–43) In this case, the sign of the angu-
lar momentum has the meaning. We call the par-
ticle is co-rotating (counter-rotating) if the angular
momentum of the particle is parallel (anti-parallel)
to that of the black hole. Fig. 7 shows the gravita-
tional wave forms for a co-rotating and a counter-
rotating case. The solid line shows a = 0.85 and
Lz = 2.6 case while the dashed line does a = 0.85
and Lz = −2.25 case. In Table I we show the energy
radiated for a = 0.99, Lz = 2 for which the change
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of the angle ∆φ ∼ 2π and mimics the coalescence
of the binary spinning black hole. If we extrapolate
this to µ→M , the efficiency EGW/M becomes 9.1%
which is the strong gravitational wave source. In Ta-
ble I, Dim means the dimension of the system and
2D means that the system is axially symmetric. As
we have already discussed, we see that the efficiency
for 2D case is very small.

5. 3D numerical relativity. Around 1988,
in Japan a supercomputer with ∼GBytes (Giga
bytes) memory and a few GFLOPS (Giga Floating
point Operations Per Second) speed appeared. This
means that non axially symmetric simulations were
possible. For example, 3D post-Newtonian calcula-
tion with 150× 150× 150 Cartesian grids requires 1
GBytes memory. The estimated computation time
was 100 hours up to 50,000 time steps. Therefore
we started such simulations for final merging phase
of Hulse-Taylor binary pulsar. Due to the emission
of the gravitational waves, the separation of the bi-
nary neutron star decreases and finally they will co-
alesce. When the separation is ∼500km, the fre-
quency of the gravitational wave is ∼20Hz. After
three minutes, two neutron stars merge to be a sin-
gle black hole. The wave for this so called “the Last
Three Minutes” is one of the main gravitational wave
sources for detectors such as TAMA300,44) LIGO,45)

VIRGO,46) GEO60047) and proposed LCGT.48) The-
oretically we first need the accurate theoretical tem-
plate of the wave form for “the Last Three Minutes”.
When the separation is large, we can regard each
neutron star as a point particle and the analytic post
Newtonian expansion calculations are adequate. The
template has parameters such as the mass of each
neutron star. Comparing the theoretical template
with the observation in future, we can determine the
mass of each neutron star, for example. This will
open a new window to the universe and is called
“gravitational wave astronomy”.

However in the final merging phase, a point par-
ticle approximation is not good but numerical sim-
ulations are needed. For such a numerical simula-
tion we first consider the radiation reaction due to
the emission of the gravitational waves. In the case
of the electro-magnetic wave, the radiation formula
starts from the second time derivative of the dipole
of the charge and the radiation reaction term is in
proportion to the third time derivative of the dipole
moment. However for the gravitational wave case,
the mass dipole moment is constant since the mass

dipole is in proportion to the center of mass. The ra-
diation formula starts from the third time derivative
of the mass quadrupole moment and the radiation re-
action term is expressed by the fifth time derivative
of the mass quadrupole moment. Therefore to com-
pute the radiation reaction term, we must perform
the fifth time derivative numerically but the result is
highly noisy due to the truncation errors so that it
was hopeless to include the radiation reaction terms.

A key idea to overcome this difficulty was as
follows.49), 50) The quadrupole moment is expressed
by the space integration of the density of the fluid.
Then the first time derivative of the quadrupole mo-
ment is expressed by the space integration of the time
derivative of the density. However using the continu-
ity equation, the time derivative of the density is ex-
pressed by the space derivative of the density and the
velocity of the fluid so that we do not need to perform
the numerical time derivative to obtain the first time
derivative of the mass quadrupole moment. For the
second time derivative of the quadrupole moment,
the time derivative of the velocity appears. However
using the equation of motion, the time derivative of
the velocity is expressed by the space derivative of
the velocity, the pressure and the gravitational po-
tential. Again we do not need to perform the nu-
merical time derivative to obtain the second time
derivative of the mass quadrupole moment. For the
third time derivative of the mass quadrupole mo-
ment, the time derivative of the gravitational poten-
tial appears. The gravitational potential is obeying
the Poisson equation. Applying the time derivative
to both sides of the Poisson equation, we can de-
rive a new Poisson equation for the time derivative
of the gravitational potential with the source term
in proportion to the time derivative of the density.
However since the time derivative of the density is ex-
pressed by the space derivative of the density and the
velocity, we can solve the new Poisson equation accu-
rately with a source term without the time derivative
as the usual Poisson equation for the gravitational
potential. For the fourth time derivative, we need the
second time derivative of the gravitational potential.
Again we can derive another new Poisson equation to
determine the second time derivative of the gravita-
tional potential with a new source term without the
time derivative. As a result, if we solve two new Pois-
son equations to determine the first and the second
time derivatives of the gravitational potential, the
fourth time derivative of mass quadrupole moment
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Fig. 8. The density contour and the velocity vector (arrows) on the equatorial plane of the coalescing binary neutron star.
The mass of each star is 1.5 times the mass of the sun. The time is shown on the upper right corner in units of milliseconds.
The thick circle shows the radius of the black hole. Fig. 8a is the initial stage. Due to the emission of the gravitational waves,
the merging of two neutron stars proceeds and finally the black hole is formed.(Fig. 8i) (from ref. 51))

Fig. 9. The gravitational wave form from the coalescence of the binary neutron star of Fig. 8 when it occurs at 30 million light
years from the earth. (from ref. 51))
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Fig. 10. The density contour and the velocity vector (arrows) on the equatorial plane of the coalescing unequal mass binary
neutron star. The masses are 1.7 and 1.28 times the mass of the sun, respectively. The smaller mass neutron star is tidally
disrupted and merged. (from ref. 52))

is obtained without the numerical time derivative.
To obtain the fifth time derivative, we perform the
numerical time derivative of the fourth time deriva-
tive of the mass quadrupole moment which is not
noisy.

Using this new formalism to compute the fifth
time derivative of the mass quadrupole moment ac-
curately, we performed many numerical simulations
of coalescing binary neutron stars including the ef-
fects of the radiation reaction for the first time. Here
we show a few of them.51)–55) We show in Fig. 8a–i,51)

the density contour and the velocity vector (arrows)
on the equatorial plane of the coalescing binary neu-
tron star. The mass of each star is 1.5 times the
mass of the sun. The time is shown on the upper
right corner in units of milliseconds. The thick circle
shows the radius of the black hole. Fig. 8a is the ini-
tial stage. Due to the emission of the gravitational
waves, the merging of two neutron stars proceeds and
finally the black hole is formed.(Fig. 8i) We show in

Fig. 9 the gravitational wave form from the coales-
cence of the binary neutron star of Fig. 8 when it
occurs at 30 million light years from the earth.51)

The amplitude of the wave is around 10−21 and is
the target sensitivity of such as LIGO.45) The en-
ergy emitted in the gravitational wave is 3% of the
mass energy. This is just the value expected in the
perturbation calculation in section 4 (Table I).

We show in Fig. 10 the density contour and the
velocity vector (arrows) on the equatorial plane of
the coalescing unequal mass binary neutron star.52)

The masses are 1.7 and 1.28 times the mass of the
sun, respectively. We see that the smaller mass neu-
tron star is tidally disrupted and merged. The en-
ergy emitted in the gravitational wave is about 2.9%
of the mass energy.

In 1992, Oohara and Nakamura first took into
account the effect of the post-Newtonian terms to the
hydrodynamics equations.53) They compared the re-
sults with those without the post-Newtonian terms.
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Fig. 11. Density and velocity on the x-y plane. The left and right figures are for the Newtonian(N) and post-Newtonian(PN)
calculations, respectively. (from ref. 53))

In Fig. 11 we show the density and the velocity on
the x-y plane. The left and right figures are for the
Newtonian(N) and the post-Newtonian(PN) calcula-
tions, respectively. Fig. 12 shows wave forms of h+

and h× observed on the z-axis at 30 million light

years. The solid and dashed lines are for PN and N,
respectively. We see the difference between the two
cases. Therefore we should take into account the full
details of the general relativity for the accurate wave
forms. However in 1990’s the power of the computer
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Fig. 12. Wave forms of h+ and h× observed on the z-axis at
30 million light years. The solid and dashed lines are for
PN and N, respectively. (from ref. 53))

Fig. 13. One of the metric tensor in the equatorial plane for
the 3D time evolution of the gravitational waves. (from
ref. 16))

was not enough to simulate the full set of the Ein-
stein equations in 3D.

Looking back to 1987 or so again, however, the
power of the computer was enough to simulate the
propagation of the 3D gravitational waves without
matter. I tried first to simulate the propagation of
the gravitational waves whose solution is known an-
alytically.16) When we consider the low amplitude
gravitational wave, we can linearize the Einstein
equations. Then we can obtain the general solution
analytically. Using this analytic solution, I started
to construct a full 3D general relativistic code. I first
omitted the matter terms and treated only the metric
tensor. At t = 0, I put the low amplitude gravita-
tional wave whose solution is known analytically. All
the non-linear terms of the Einstein equation were in-
cluded in my code. In each time step, I compared the
numerical solution with the analytic one and found

Fig. 14. The dotted line shows the accuracy of the numerical
solution compared with the analytic one for low amplitude
gravitational waves. The solid line shows the energy flux of
the gravitational wave while the dashed line is the integra-
tion of the energy flux. (from ref. 16))

that the accuracy was not good. Since the non-linear
term was included in my code, I first considered that
the non-linear terms were the origin of the bad ac-
curacy. Then I omitted the non-linear terms in the
code but still the accuracy was bad. This difficulty
opened a new formalism of the Einstein equations in
3D numerical relativity.

In the vacuum Einstein equations, the basic
variables are ten components of the metric tensor.
Four of them are coordinate degrees of freedom.
Then true degrees of freedom seem to be six(= 10−4)
spatial components of the metric tensor. However,
the Einstein equations have ten components. Six
components of the Einstein equations are essentially
the time evolution equations of six spatial compo-
nents of the metric tensor. The other four compo-
nents of the Einstein equations are not the evolution
equations but called the constraint equations of six
spatial components of the metric tensor. This means
that six spatial components of the metric tensor are
not free although they obey six evolution equations.
True degree of freedom is therefore two(= 6 − 4)
which correspond to two degrees of the polariza-
tion of the gravitational waves. In 3D code, we
first(t = 0) put the initial data of six spatial com-
ponents of the metric tensor compatible with four
constraint equations. Next we choose four compo-
nents of the metric tensor which express the coordi-
nate degrees of freedom. We then get the numerical
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Fig. 15. The first 3D full general relativistic simulations of coalescing binary neutron stars. The figure shows contours of the
gravitational wave in x-y, y-z, z-x plane. t is time in unit of 5 × 10−6 s. For t = 29.7 we see the spiral gravitational wave
pattern in x-y plane while the pattern is expanding mainly along the z-axis in y-z and z-x plane. (from ref. 56))

value of six spatial components of the metric tensor
at t = t + ∆t from the evolution equations. Ana-
lytically, the constraint equations are guaranteed in
this formalism, but numerically they are not. The
key idea is to use auxiliary variables in the evolution
equations using the constraint equations. Then the
accuracy of the numerical code becomes much better
since the constraint equations are used (for details
see refs. 16), 57), 56)). Fig. 13 shows one compo-
nent of the metric tensor in the equatorial plane for
the 3D time evolution of the gravitational waves.16)

In Fig. 14, the dotted line shows the accuracy of the
numerical solution compared with the analytic one
for low amplitude gravitational waves.16) We see that
the accuracy is a few %.

In 1993, I first performed the numerical sim-
ulation of the coalescence of the binary neutron
stars.59),56) In Fig. 15, I show the first 3D full gen-
eral relativistic simulations of coalescing binary neu-

tron stars. The figure shows contours of the grav-
itational wave in x-y, y-z, z-x plane. t is the time
in units of 5 × 10−6 s. For t = 29.7 we see the spi-
ral gravitational wave pattern in x-y plane while in
y-z and z-x plane the pattern is expanding mainly
along the z-axis. This wave pattern is typical for the
quadrupole mode. However the lack of the power of
super computers at that time did not allow me for
full 3D accurate simulations for more detailed study.

The new formalism of the Einstein equations
for numerical relativity proposed by me in 1987
was developed by Shibata and Nakamura (1995)57)

as well as Baumgarte and Shapiro (1999).58) It
is now called BSSN(Baumgarte-Shapiro-Shibata-
Nakamura) formalism. The BSSN formalism is now
widely adopted in 3D numerical codes. For exam-
ple, very recently Baker et al. (2006)60) and Cam-
panelli et al. (2006)61) succeeded in computing the
gravitational waves from coalescing binary non spin-
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ning black holes in full general relativity adopting the
BSSN formalism. Both of papers found that ∼3%
of the rest energy is converted to the gravitational
waves. It is surprising that this number is almost the
same as the extrapolation from the perturbation cal-
culations listed in Table I (line 2). As for the merger
of binary neutron star, Shibata, Taniguchi and Uryu
(2005)62) as well as Shibata and Taniguchi (2006)63)

adopted the BSSN formalism and performed the de-
tailed full general relativistic simulations with the
detailed equation of state and found that the am-
plitude of the gravitational wave is ∼10−21 at the
distance of 30 million light year. This amplitude is
very similar to the result of Nakamura and Oohara51)

with the post Newtonian approximation.
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Duchêne, G. (2005) Astrophys. J. 620, 744–757.

6) Kormendy, J., and Gebhardt, K. (2001) In The
20th Texas Symposium on Relativistic Astro-
physics (eds. Martel, H., and Wheeler, J. C.).
AIP, New York, pp. 1–19 (in press). (astro-
ph/0105230).

7) Hawking, S. W., and Ellis, G. F. R. (1973) The
large scale structure of space time. Cambridge
University Press, Cambridge.

8) Penrose, R. (1974) In Gravitational radiation
and gravitational collapse (Proceedings of the
Symposium, Warsaw, Poland, September 5–8,
1973). D. Reidel Publishing, Dordrecht, pp. 82–
91.

9) Israel, W. (1967) Phys. Rev. 164, 1776–1779.
10) Carter, B. (1971) Phys. Rev. Lett. 26, 331–333.
11) Robinson, D. C. (1975) Phys. Rev. Lett. 34, 905–

906.
12) Tomimatsu, A., and Sato, H. (1973) Prog. Theor.

Phys. 50, 95–110.
13) Smarr, L. (1977) Ann. N. Y. Acad. Sci. 302, 569–

604.

14) Nakamura, T., Maeda, K., Miyama, S., and
Sasaki, M. (1980) Prog. Theor. Phys. 63, 1229–
1244.

15) Nakamura, T. (1981) Prog. Theor. Phys. 65,
1876–1890.

16) Nakamura, T., Oohara, K., and Kojima, Y. (1987)
Prog. Theor. Phys. 90 (Suppl.), 1–218.

17) Nakamura, T., and Sato, H. (1981) Prog. Theor.
Phys. 66, 2038–2051.

18) Nakamura, T., and Sato, H. (1982) Prog. Theor.
Phys. 67, 1396–1405.

19) Nakamura, T., and Sato, H. (1981) Phys. Lett.
86A, 318–320.

20) Nakamura, T. (1984) General Relativistic Col-
lapse of Rotating Stars. Invited talk at the
eleventh TEXAS Symposium on Relativistic As-
trophysics (December 1982 Austin USA); Naka-
mura, T. Ann. NY Acad. 422, 56–81.

21) Stark, R., and Piran, T. (1985) Phys. Rev. Lett.
55, 891–894.

22) Stark, R., and Piran, T. (1986) In Gravitational
Collapse and Relativity. (eds. Sato, H., and
Nakamura, T.). World Scientific, Singapore, p.
249.

23) Shibata, M. (2000) Prog. Theor. Phys. 104, 325–
358.

24) Sekiguchi, Y., and Shibata, M. (2004) Phys. Rev.
D70, 084005.

25) Nakamura, T., and Oohara, K.(1983) Phys. Lett.
98A, 403–406.

26) Hulse, R. A., and Taylor, J. H. (1975) Astrophys.
J. 195 L51–L53.

27) Voss, R., and Tauris, T. M. (2003) MNRAS 342,
1169–1184.

28) Teukolsky, S. A. (1973) Astrophys. J. 185, 635–
648.

29) Sasaki, M., and Nakamura, T. (1981) Phys. Lett.
87A, 85–88.

30) Regge, T., and Wheeler, J. A. (1957) Phys. Rev.
108, 1063–1069.

31) Zerilli, F. J. (1970) Phys. Rev. D2, 2141–2160.
32) Davis, M., Ruffini, R., Press, W. H., and Price,

R. H. (1971) Phys. Rev. Lett. 27, 1466–1469.
33) Bardeen, J. M., and Press, W. H. (1973) J. Math.

Phys. 14, 7–19.
34) Chandrasekhar, S. A., and Detweiler, S. (1975)

Proc. R. Soc. London A345, 145–167.
35) Sasaki, M., and Nakamura, T. (1982) Phys. Lett.

89A, 68–70.
36) Sasaki, M., and Nakamura, T. (1982) Prog. Theor.

Phys. 67, 1788–1809.
37) Oohara, K., and Nakamura, T. (1983) Prog.

Theor. Phys. 70, 757–771.
38) Oohara, K., and Nakamura, T. (1984) Prog.

Theor. Phys. 71, 91–99.
39) Detweiler, S., and Szedenits, E. (1979) Astrophys.

J. 231, 211–218.
40) Kojima, Y., and Nakamura, T. (1983) Phys. Lett.



No. 9] Formation of black hole and emission of gravitational waves 327

96A, 335–338.
41) Kojima, Y., and Nakamura, T. (1983) Phys. Lett.

99A, 37–40.
42) Kojima, Y., and Nakamura, T. (1984) Prog.

Theor. Phys. 71, 79–90.
43) Kojima, Y., and Nakamura, T. (1984) Prog.

Theor. Phys. 72, 494–504.
44) TAMA300(http://tamago.mtk.nao.ac.jp/)
45) LIGO(http://www.ligo.caltech.edu/)
46) VIRGO(http://wwwcascina.virgo.infn.it/)
47) GEO600(http://www.geo600.uni-hannover.de/)
48) LCGT(http://www.icrr.u-

tokyo.ac.jp/gr/gr.html)
49) Oohara, K., and Nakamura, T. (1989) Prog.

Theor. Phys. 82, 535–554.
50) Nakamura, T., and Oohara, K. (1989) Prog.

Theor. Phys. 82, 1066–1083.
51) Oohara, K., and Nakamura, T. (1990) Prog.

Theor. Phys. 83, 906–940.
52) Nakamura, T., and Oohara, K. (1991) Prog.

Theor. Phys. 86, 73–88.
53) Oohara, K., and Nakamura, T. (1992) Prog.

Theor. Phys. 88, 307–315.
54) Shibata, M., Oohara, K., and Nakamura, T.

(1992) Prog. Theor. Phys. 88, 1079–1095.
55) Shibata, M., Oohara, K., and Nakamura, T.

(1993) Prog. Theor. Phys. 89, 809–819.

56) Oohara, K., Shibata, M., and Nakamura, T.
(1997) Prog. Theor. Phys. 128 (Suppl.), 183–
249.

57) Shibata, M., and Nakamura, T. (1995) Phys. Rev.
D52, 5482–5444.

58) Baumgarte, T. W., and Shapiro, S. L. (1999) Phys.
Rev. D59, 024007.

59) Nakamura, T. (1994) 3D Numerical Relativity.
Relativistic Cosmology. In Proceedings of the 8-
th Nishinomiya-Yukawa Memorial Symposium
(ed. Sasaki, M.). University Academy Press,
Tokyo, pp. 155–182.

60) Baker, J. G., Centrella, J., Choi, D., Koppitz, M.,
and van Meter, J. (2006) Phys. Rev. Lett. 96
111102.

61) Campanelli, M., Lousto, C. O., Marronetti, P.,
and Zlochower, Y. (2006) Phys. Rev. Lett. 96
111101.

62) Shibata, M., Taniguchi, K., and Uryu, K. (2005)
Phys. Rev. D71, 084021.

63) Shibata, M., and Taniguchi, K. (2006) Phys. Rev.
D73, 064027.

(Received Aug. 25, 2006; accepted Sept. 19, 2006)

Profile

Takashi Nakamura was born in 1950 and started his research career in 1973

with studies on nuclear astrophysics in Kyoto University after graduating the Fac-

ulty of Science at the Kyoto University. In his graduate student age, he organized

a group to study numerical relativity which was called Kyoto Numerical Relativity

Group. In 1981, he succeeded in the computation of the formation of rotating black

holes. This was the first demonstration of the non-spherically symmetric dynamical

space time with matter. He also found with Sasaki, the Sasaki-Nakamura equation

which is the basic equation for the perturbation of the rotating black hole with

matter. He also performed various pioneering works on 3D numerical relativity in-

cluding the BSSN formalism. He was promoted to Professor at the Yukawa Institute

for Theoretical Physics in Kyoto University in 1990 and moved to the Department

of Physics, Faculty of Science at the Kyoto University in 2001 where he is educating many students in the

field of general relativity and relativistic astrophysics. He was awarded the Nishinomiya-Yukawa memorial

award in 1990 and the Japan Academy Prize in 2005. He was the Principal Investigator of the Grant-in-Aid

for Scientific Research on Priority Areas (“Gravitational Wave Astronomy”) of the Ministry of Education,

Science and Culture from 1991 to 1994.


