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Resistance minimum and heavy fermions

By Jun Kondo, m.j.a.†)

(Contributed by Jun Kondo, m.j.a.)

Abstract: The phenomenon of the resistance minimum in dilute magnetic alloys is explained
in terms of the s-d interaction which takes account of scattering of the conduction electron off the
magnetic impurities in metals. Some of the intermetallic compounds which involve rare earth
elements or uranium show a very large electronic specific heat and remain non-magnetic even
though they show a Curie-like susceptibility at higher temperatures. These phenomena are also
explained based on the s-d interaction model.
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1. Introduction. The electrical resistance
of a metal usually decreases as the temperature is de-
creased. This is because the atomic vibration which
causes the electrical resistance calms down and the
electrons tend to move freely in the metal as the
temperature is decreased (Fig. 1 (a)). Another cause
of the resistance is the impurity atom and the resis-
tance arising from this cause is independent of the
temperature. When these two causes coexist, the re-
sistance looks like Fig. 1 (b). However, when a small
amount of atoms like manganese or iron are put into,
e.g., copper, the resistance first decreases as the tem-
perature is decreased but then tends to increase to-
wards low temperature like liquid helium tempera-
ture (Fig. 1 (c)). The turn-over temperature is typ-
ically 20K and the value of the resistance increases
about 10% by 4 K. In this case the impurity atom
of manganese or iron possesses a spin and is called
magnetic impurity, which behaves like a small mag-
net. This phenomenon (Fig. 1 (c)) is called the resis-
tance minimum, and turned out to occur inevitablly
when noble metals and di-valent metals involve small
amount (less than 1 atomic per cent) of magnetic im-
purities.1) This phenomenon interested many people
and has been discussed by these people from the time
of the first international conference on low tempera-
ture physics. The main concern was the cause of the
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Fig. 1. Temperature dependence of the electrical resistivity
of a metal. a: pure metal, b: metal involving impurities, c:
metal involving magnetic impurities.

resistance minimum but the answer was not easily
obtained. In this article I shall mention a theoretical
explanation of it and touch upon a related subject
of heavy fermion systems.

Before mentioning the main subject I shall men-
tion the difficulties of the problem from theoretical
point of view. The fact in question is that the elec-
trical resistance arising from magnetic impurities in-
creases as the temperature goes down. In general the
cause of the electrical resistance, e.g. atomic vibra-
tion, calms down as the temperature decreases and
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so the resistance also decreases. Thus the inverse is
hard to be realized. Furthermore, the fact that the
resistance minimum occurs at low temperatures such
as 20K is a hard question to answer. This fact im-
plies that the things which cause electrical resistivity
are not settled but perform internal motion even at
these low temperatures. For example in the case of
iron impurity in gold the resistivity continues to in-
crease even at temperatures as low as 0.01K2) and
one may wonder what is changing in the iron atom
at such a low temperature. One more thing difficult
to explain is that the resistance minimum always oc-
curs when a metal contains small amount of mag-
netic impurities. Suppose that one took a special
model and could overcome the difficulties mentioned
above for some magnetic alloys. He then must pro-
ceed to explain anomalies of other magnetic alloys.
But the special model would not be applicable to any
other magnetic alloys. Thus one must use a standard
and simple model, which had, however, been studied
enough and turned out not to be useful to explain
the resistance minimum.

I shall mention how these difficulties were over-
come. Roughly speaking I took a model which is so
universal as applicable to most magnetic impurities
and devised the way to calculate the resistivity using
the universal model. In our case the cause of the re-
sistivity is the scattering of the free electrons in the
metal off the magnetic impurity, which possesses a
spin. The direction of the spin may be up or down
in the case of S=1/2. In the previous calculations
the spin direction was fixed to up or down but actu-
ally the direction changes from time to time due to
the interaction between the spin and the metal elec-
trons. I took account of this fact into my calculation
and this was achieved by calculating the higher-order
corrections to the previous calculation.3) The correc-
tion term turned out to depend on the temperature
and cleared the difficulties mentioned above. Before
going into this subject some preliminaries are neces-
sary.

2. Free electron model of the metal. In
the case of copper metal, e.g., the copper ions have
a valence +1 and are arranged regularly forming a
lattice in which the electrons are traveling. One may
consider that these electrons are moving as freely as
molecules in a gas, so they are called free electrons.
Its energy is given by mv2/2, where m is the mass
of the electron and v is its velocity. The total en-
ergy of the electrons is obtained by summing this

Fig. 2. Energy levels of the free electron of a metal. (a) At
zero temperature each level is occupied by two electrons
from the lowest level. (b) At temperature T , levels in the
range kBT around the fermi energy are either occupied by
the electron or empty.

energy for all the electrons. At zero temperature
the system is in the lowest energy state, where not
all the elelctrons are in the state v = 0. The value
of v is quantized and each quantized state is occu-
pied by an up-spin electron and a down-spin electron.
When all the electrons are distributed from the low
energy states, the highest energy of the electron will
be about electron volts and its velocity will be about
108 cm/sec. This highest energy is called the fermi
energy (Fig. 2 (a)) and is written as εF. In the vx,
vy, vz space the constant energy surface is a sphere,
because the energy depends only on the magnitude
of v. The constant energy surface corresponding to
the fermi energy is called the fermi surface and the
sphere enclosed by it is called the fermi sphere. All
the states inside of the fermi sphere are occupied by
two electrons (up and down spin) and all the states
outside of it are empty.

Suppose that the system is at the temperature
T . Then the electron receives an energy of the or-
der of kBT (kB: the Boltzman constant) from the
surroundings and jumps up to an upper level. But
this is possible only for the electrons whose energy is
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close to the fermi energy. For the electron far below
the fermi energy the energy kBT is too small to raise
it above the fermi energy. The energy levels below
the fermi energy are already occupied by other elec-
trons and Pauli’s principle prevents the electron to
jump into these levels. Thus thermal excitation of
the electrons takes place only in the energy range of
the order of kBT around the fermi energy (Fig. 2 (b)).
Consequently the states in this energy range are ei-
ther occupied by an electron or empty.

Now suppose that there are impurity atoms in
the sea of the free electrons. For example there may
be zinc atoms in the host metal copper. The zinc
atom has a valence +2, which is larger than that of
copper. Then the free electrons feel this extra charge
of zinc and so its velocity v is no longer a constant
but makes change, namely the electron is scattered.
This causes the electrical resistance. In quantum me-
chanics the rate of such scattering (or transition of
the electron state) is a matter of concern. In quan-
tum mechanics the state of velocity v is represented
by a plane wave of the wave number k = mv/� and
its wave function is expressed by ψk(r) = eik·r . Here
� is the Planck constant h devided by 2π. From now
on we shall use k instead of v. When we calculate
the transition rate from k to k′, it is necessary to
find the matrix element of the transition, which is
expressed by

Vk→k′ =
∫
ψ∗

k′ (r)V (r)ψk(r)dv.

Here V (r) is the potential which the electron feels.
The transition rate which we denote as Wk→k′ is
proportional to the absolute square of the above ex-
pression and is not zero only when k and k′ have
the same energy. We define γk by γk =

∑
k′ Wk→k′ ,

which is the probability with which the electron k

changes into any other state and is directly related
to the electrical resistivity.

Now we must know which electron contributes
to the electrical resistivity. To find the answer to this
problem let us consider the case when the electric
field E is applied to the system. Then each electron
is accelerated according to the equation of motion
dv/dt = −eE/m, where −e is the charge of the elec-
tron. Then in the vx, vy, vz space every electron in
the fermi sphere will move in the direction opposite
to E (because of the negative sign of the electron
charge). Then the number of the electrons with the
velocity v parallel to E decreases and that with the

Fig. 3. Under an electric field the fermi sphere of a metal
shifts to the direction opposite to the external electric field.

velocity antiparallel to E increases (Fig. 3). Then
a current parallel to E flows and its magnitude in-
creases in proportion to time. On the other hand,
the direction of the velocity tends to be randomized
by scattering of the electron, i. e., by the action rep-
resented by Wk→k′ . Then the situation that the ve-
locity antiparallel to E is leading is weakened and
the tendency for the current to increase and that for
the velocity randomized are balanced and finally the
current becomes a constant and proportional to the
electric field, thus ending in Ohm’s law.

Now consider an electron well inside of the fermi
sphere. It will be scattered to a state with the same
energy, which will also be well inside of the fermi
sphere because of the energy conservation. Such a
state, however, will have already been occupied by
an electron, so such scattering cannot take place.
Then only the electrons in the energy range about
kBT around the fermi energy can make transition
from impurity scattering and make contribution to
the electrical resistance. This is because the states
into which these electrons make transition may be
empty (Fig. 2 (b)). Let the average of γk for these
electrons be 〈γk〉 and then the electrical resistivity is
expressed by

ρ = m〈γk〉/ne2, [1]

here n is the density of the electrons. 1/〈γk〉 is called
the relaxation time and represents the time during
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which the electron with the wave number k loses its
wave number.

What is the temperature dependence of expres-
sion [1]? It arises from the fact that the average 〈γk〉
is taken over the electrons in the energy range kBT

around the fermi energy. If γk depends very little on
the electron energy, 〈γk〉 will be nearly independent
of the temperature. In fact the value of γk at the
fermi energy and that apart from the fermi energy
by 20K will be almost the same. Then we expect ρ
is nearly a constant around 20K.

3. Magnetic impurities. In the previous
discussion we supposed that metal copper contained
a small amount of zinc impurity atoms. Now con-
sider manganese as an impurity. In copper, valence
of manganese will be +2 and manganese has five
3d electrons and their spins will be parallel due to
Hund’s rule. In Fig. 4 (a) the energy levels of or-
bitals of Mn2+ are shown. For simplicity only one
3d orbital and one 3d electron are depicted. One
might consider that the 3d orbital may admit one
more electron with opposite spin (Fig. 4 (b)). How-
ever, there occurs a large Coulomb energy U between
two electrons in a 3d orbital. U is usually very large
for 3d orbitals and the situation depicted in Fig. 4 (c)
will be realized. Then the electron which has an ex-
tra energy U may fall down to the fermi energy and
the situation of Fig. 4 (a) will occur again. This is
the mechanism for the manganese ion to have a local
spin (singly occupied 3d orbital). If U is small or 3d
level is much lower, then the situation of Fig. 4 (b) is
stable. This is the case of zinc impurity. In this way
whether the impurity atom has a local spin or not
depends on the magnitude of U .

The valence of manganese ion is different from
that of copper ion and so the free electron feels po-
tential from the manganese impurities. This gives
rise to the electrical resistance. In the case of man-
ganese which possesses a local spin, however, there
occurs another thing. The state of Fig. 4 (a) is not a
stationary state but may make transition to another
state. Suppose that the electron with wave number
k and down spin jumps into the 3d orbital and the
situation of Fig. 4 (c) is realized. This process is pos-
sible virtually. By “virtually” I mean “for a short
time”. If after a short time the jumped electron re-
turned to a state k′, then the electron k made tran-
sition to k′ effectively. When k and k′ have the same
energy, this transition is not virtual but real. This
transition is possible when the 3d orbital is singly

occupied. The matrix element of this transition can
be calculated and will be denoted as J(k → k′). It
is noted that the sign of J(k → k′) is negative. The
rate of transition is obtained by taking its absolute
square and then the electrical resistance is calculated
as previously. The electrical resistance thus obtained
is almost temperature independent for the same rea-
son as in the previous case.

4. Resistance minimum. In the previous
model of the magnetic impurity the free electron
jumps into or out of the 3d orbital and an important
factor is the Coulomb repulsion U which becomes ef-
fective when two electrons occupy a 3d orbital. This
is a standard model for the magnetic impurity and
is called the Anderson model,4) which is applicable
not only to manganese but also to many other mag-
netic impurities. The electrical resistance calculated
based on this model did not depend on the temper-
ature very much, however. So let us take account
of some correction to the calculation mentioned pre-
viously.3) The transition process considered in the
previous section will be represented as k↓, ↑→ k′↓, ↑
including spin, where the second arrow indicates the
3d spin. The matrix element of this process is de-
noted as

J(k ↓, ↑→ k′ ↓, ↑). [2]

However, the following process also gives us the same
result k↓, ↑→ k′↓, ↑: Suppose the electron k ↓ virtu-
ally makes transition to k′′↓ and then to k′↓. Here
k′′ may have an energy different from k but must
not be occupied by an electron, otherwise such tran-
sition cannot occur due to Pauli’s principle. This
higher order process must be summed over k′′, and
the quantum mechanics tells us that the matrix ele-
ment is given by

∑
k′′

J(k↓,↑→k′′ ↓, ↑)·J(k′′ ↓,↑→k′ ↓,↑)
εk − εk′′

(1−fk′′),

[3]

and the sum of [2] and [3] is the matrix element in-
cluding the correction. Here εk is the energy of the
electron with wave number k and from the relation
k = mv/� is expressed by εk = mv2/2 = �

2k2/2m.
The factor fk is unity when the state k is occupied
and zero when it is empty. Due to the factor 1− fk′′

the summation in [3] is limited to the unoccupied
states, namely to the outside of the fermi sphere.
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Fig. 4. Energy levels of the free electron in a metal and those of the impurity atom. (a) In a magnetic impurity a local spin
exists in the 3d level. (b) The spin of the 3d level was canceled by the free electron. (c) An energy U is necessary for two
electrons to occupy a single 3d level.

There is another higher order process which
gives the same result as the above one. In this pro-
cess an electron k′′↓ within the fermi sphere first
makes transition to k′↓ and then the electron k ↓
to k′′↓. This also results in the transition k ↓, ↑→
k′ ↓, ↑. In this case the summation over k′′ is made
within the fermi sphere. The matrix element of this
process is expressed by

∑
k′′

J(k′′ ↓, ↑→ k′ ↓, ↑) · J(k ↓, ↑→ k′′ ↓, ↑)
εk′ − εk′′

fk′′ ,

[4]

which must be added to [3] to obtain the higher or-
der matrix element. Now we note that in the real
transition k↓, ↑→ k′ ↓, ↑ the energy of the electron
must be the same as before and after the transition,
which implies εk = εk′ . When one adds [3] and [4]
with this relation in mind, one finds the result

∑
k′′

J(k ↓, ↑→ k′′ ↓, ↑) · J(k′′ ↓, ↑→ k′ ↓, ↑)
εk − εk′′

, [5]

where the factor fk′′ has disappeared. Then the sum-
mation over k′′ extends both inside and outside of
the fermi sphere. The summation outside will be cut
off at an appropriate energy.

To have a temperature dependence of the re-
sistivity the transition rate γk must be dependent

on the value of k. Since [5] involves εk, one has
a k-dependence of the transition rate. How big is
the dependence? Since the numerator of [5] is not
strongly dependent on k′′, we may consider it as a
constant and take out of the summation sign:

J2
∑
k′′

1
εk − εk′′

.

Let us denote the number of k′′ whose energy is bet-
ween εk′′ and εk′′ + dεk′′ by ρ(εk′′ )dεk′′ , then the
above sum may be written as

J2

∫ D

0

1
εk − εk′′

ρ(εk′′)dεk′′ .

Here the integral was cut at D, which may be a few
times larger than the fermi energy. When εk′′ is close
to εk, the integrand may be large. However, its sign
changes when εk′′ passes through εk, and so the in-
tegral may not become large. In fact if ρ is set to a
constant, the integral becomes J2ρ log |εk/(εk −D)|,
which is never large. One also sees that this expres-
sion is very weakly dependent on k. The value of
this expression for εk equal to the fermi energy and
that for εk only slightly different from the fermi en-
ergy are almost the same, as one can immediately
see from the expression. Then the electrical resis-
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tivity calculated with this expression has only small
temperature dependence.

Now we enter the main subject. In either the
process [3] or [4] the direction of 3d spin remained
the same. However, in the intermediate state the
spin direction may be reversed. If first the transition
k ↓, ↑→ k′′ ↑, ↓ took place and then the transition
k′′ ↑, ↓→ k′ ↓, ↑ followed, we eventually obtain the
transition k↓, ↑→ k′↓, ↑, with the intermediate spin
reversed. The matrix element of this process is ex-
pressed by

∑
k′′

J(k↓,↑→k′′ ↑,↓)·J(k′′ ↑,↓→k′ ↓,↑)
εk − εk′′

(1−fk′′),

[6]

which must be added to [5]. This involves the fermi
factor fk′′ . We have seen that the fermi factor in
[3] was cancelled by that in [4]. One might consider
that the same thing might happen for the fermi fac-
tor in [6]. For this one must consider the process
where the order of the transition k↓, ↑→ k′′↑, ↓ and
k′′↑, ↓→ k′↓,↑ is reversed. However, it is impossible
that k′′↑→ k′↓ takes place first, because the 3d spin
is up first and so k′′↑, ↑ must make spin-flip transi-
tion but this is impossible. In order to estimate the
value of [6] we note that the numerator and ρ(εk′′)
do not depend on k′′ strongly and we regard them
constants. Then [6] becomes

J2ρ

D∫

0

1 − fk′′

εk − εk′′
dεk′′ = J2ρ

D∫

εF

1
εk − εk′′

dεk′′ . [7]

Due to the factor 1− fk′′ the integral over εk′′ is cut
off at the fermi energy. This integral is evaluated
easily and [7] becomes J2ρ log |(εk − εF)/(εk −D)|.
Adding this to the lowest order term J and taking
its absolute square we find the transition rate from
k to k′ as

Wk→k′ ∝J2+2J3ρ log |(εk−εF)/(εk−D)|+O(J4).

[8]

We note that γk is proportional to the same expres-
sion.

In previous works the electrical resistivity was
calculated using the J2 term of [8]. The new term is
of the order of J3ρ and about 1/10 of J2. This is not
small and depends on the electron energy strongly.
In fact when εk is very close to εF the logarithm

tends to diverge. This is due to the fact that the
lower limit of integration is εF and this fact is due to
the factor 1− fk′′ in [6]. The same factor was in [3],
which was cancelled by another factor in [4]. On the
other hand such cancellation did not occur for [6].

According to [1] the electrical resistivity is ob-
tained by averaging γk over the electron energy εk in
the range about kBT around εF, thus it is expressed
by

R = R0[1 + 2Jρ log |kBT/(D − εF)|], [9]

where R0 is the resistivity obtained when J2 in [8]
is used and D − εF � kBT was assumed. Since
J is considered to be negative, the resistivity of [9]
increases logarithmically as the temperature is de-
creased. This is experimentally observed and an ex-
ample is shown in Fig. 5.3)

Now we mention how the difficulties mentioned
at the begining were overcome. First, we took the
Anderson model, which is very universal and may be
applicable to all the magnetic impurities. Second,
the increase of the resistivity following decrease of
the temperature is explained by a negative J . That
J is negative can be shown from the derivation of
the matrix element. Third, the temperature depen-
dence of the resistivity at very low temperature is un-
derstood from the logarithmic correction term. This
temperature dependence does not come from the im-
purity itself but comes from the free electrons. When
the electron energy εk is close to εF, the transition
rate diverges logarithmically.

We have seen that [9] agrees with experiment
very well. However, it involves a difficulty that the
resistivity diverges as the temperature T approaches
zero. Actually before the zero temperature, as the
temperature defined by

kBTK ≡ (D − εF)e1/Jρ [10]

is approached, the second term of [9] becomes com-
parable to the first term and no more a correction
term, so [9] is not valid below this temperature. This
problem has been treated by many people. Accord-
ing to these works higher order terms are important.
[8] or [9] involves the first two terms in the expansion
in terms of Jρ. The terms higher than these involve
higher powers of logT and all become comparable at
TK, so expansion must include all these terms. Ac-
cording to these calculations the resitivity deviates
from logT below TK and approaches a constant. Ac-
cording to [10] TK depends on Jρ sensitively and may
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Fig. 5. The temperature dependence of the resistivity of gold with small amount of iron impurity. Comparison between theory
and experiment.

take various values depending on the host metal and
the impurity, being higher than 100K for some al-
loy and lower than 0.01K for other. For alloys with
higher TK the resistivity is experimentally observed
to approach a constant.

5. Later development. With resistance
minimum as a start, the magnetic impurity in the
metal interested many people theoretically and ex-
perimentally.5) The central issue is the interaction
between the free electron of the metal and the impu-
rity with local spin. In this paper it was represented
by J . If this is zero, both systems are independent

∗) This is applicable only in quantum world. In classical
physics a precise measurement will give us ∆ν ≈ 0 even when
t is shorter than T .

and the impurity has a local spin and shows a Curie
susceptibility. If S = 1/2, the spin is doubly degener-
ate and may be up or down and one mol of the spin
has an entropy R ln 2. If J is finite, the free electron
is scattered and the spin direction of the impurity
may be changed. These facts have an effect on the
susceptibility and the entropy. When these quanti-
ties are expanded in terms of J , one has logT terms.
As a result of this the susceptibility deviates from
the Curie law below TK and tends to a constant as
absolute zero of temperature is approached. Further-
more the entropy tends to decrease below TK and the
specific heat shows a peak. As the absolute zero is
approached, the specific heat per spin tends to zero
following the law kBT/TK.
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The properties of the magnetic impurity in met-
als change drastically at TK. What happens at TK?
We note that the change at TK is not discontinuous
but gradual. The key fact is that the spin direc-
tion of the impurity changes due to the interaction.
The change occurs according to the following pro-
cess. The electron with down spin interacts with the
up spin of the impurity and flips its spin downward
and at the same time flips the electron spin itself up-
ward. The upward flip of the impurity spin may be
considered in a similar way. This is quite similar to
the nuclear spin in metals interacting with metallic
electrons and flipping its own spin. The mechanism
of this spin flip is called the Korringa mechanism and
is familiar to NMR people. By a calculation similar
to this case the rate of the spin flip is obtained as

Γ = (2π/�)J2ρ2kBT. [11]

The inverse of this is the time during which the spin
flips and is called the relaxation time τ :

τ = (�/2πJ2ρ2kBT ). [12]

J and ρ here may be considered to be the same as
those of previous sections.

When Γ is very large (τ short), the spin flips
up and down quickly and is half up and half down
(case 1). On the other hand when Γ is very small
(τ long), the spin may be either up or down (case
2). Physics shown by the spin may be quite different
in these two cases, and we note that TK indicates
the distinction between the two cases. This will be
discussed later, but at present we shall tell that Γ
is large when hΓ � kBT (case 1) and vice versa.
Why the temperature comes in here will be explained
later.

Before telling this we mention about the uncer-
tainty relation between time and energy. We present
a very naive explanation of this. Suppose we observe
an oscillator for the time t and want to find its fre-
quency. If t is very large compared with the period
T of the oscillation, the frequency will be determined
very accurately. Let the frequency be ν and its er-
ror ∆ν, then we will have ∆ν/ν ≈ T/t.∗) Noting
νT = 1 and multiplying both sides of this expression
by the Planck constant h, we have ∆(hν) ≈ h/t. hν
is the energy E of the oscillator, but may in general
be taken as the energy:

t ≈ h/∆E. [13]

Fig. 6. Relation between Γ and T given by [11]. Γ actually
behaves as a dotted line and exceeds kBT/h below TK.

This is the uncertainty relation between time and
energy. This relation is interpreted as follows: When
one knows the energy of a system with the accuracy
∆E, he observes the system for time t given by [13].

Going back to the temperature, let us assume
that the magnetic impurity is at the temperature T .
Then the impurity receives an energy of the order of
kBT , which may actually be 2kBT or 0.5kBT . In any
case uncertainty of the energy is about kBT . Then
[13] tells us that we observe this system only for the
time h/kBT . Comparing this time with the spin re-
laxation time τ [12] we find τ � h/kBT because of
J2ρ2 
 1. This means that the spin relaxation time
is much longer than the time for which we observe
the system. When we see the spin, it may be either
up or down and does not change its direction quickly.
In another word the spin is doubly degenerate. This
is the base for calculations of [3] and [6] etc. and
corresponds to the case of T > TK.

This argument becomes invalid when the tem-
perature becomes lower than TK. This is because
the expression of τ [12] or Γ [11] becomes invalid
at low temperatures. For example [11] is the low-
est order of J . Higher order terms involve logT and
Γ ceases decreasing in proportion to T and becomes
Γ ≈ kBTK/h at TK and tends to a constant as T → 0
(Fig. 6). Consequently τ ceases increasing in pro-
portion to T−1 below TK and tends to a constant.
As a result of this we have τ < h/kBT below TK.
Namely, below TK the spin changes its direction for
much shorter time than the time for which we ob-
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serve the spin. Then the up spin state and the down
spin state will be mixed and double degeneracy will
be removed. The susceptibility will deviate from the
Curie law and will approach the Pauli susceptibility.
The entropy tends to zero as T → 0. In this way
physics of the magnetic impurity drastically changes
across TK.

We shall mention the electrical resistivity. We
will use Friedel’s theorem, according to which the
electrical resistivity caused by an impurity is small
when the number of electrons in the orbital of the
impurity is 0 or 1 and large when it is 1/2. Then
above TK the spin direction is either up or down and
the number of up spin electron is 1 and that of down
spin electron is 0 or vice versa and so anyway the
resistivity is small. Below TK the spin is half up
and half down and so the number of each electron
is 1/2 and the resistivity is large. Consequently, as
the temperaturer goes down, the resistivity increases
across TK. The logT term which appeared in the
resistivity at high temperature is the initiative of this
increase.

6. Heavy fermions. Up to now we have as-
sumed that the concentration of the impurity is small
(for example, less than 1%). Then the interaction
between impurities will be neglected, and in fact the
resistivity due to impurities is known experimentally
to be proportional to the impurity concentration.
For higher impurity concentration we have a differ-
ent situation. There occurs an RKKY interaction∗∗)

between impurity spins, which may be positive or
negative depending on the distance between the im-
purities and so acts so as to align the spins parallel
or antiparallel. As a result the spin may be aligned
to some direction determined by other spins. Since
the impurities are randomly distributed, the spin
arrangement will not be regular such as ferromag-
netism or antiferromagnetism but will be such that
called a spin glass. At high temperatures the spin di-
rections will be thermally randomized and the spins
become paramagnetic. If the temperature at which
such paramagnetic transition occurs is denoted by
Tm, then kBTm is of the order of the interaction en-
ergy between the spins and is small when the impu-
rity concentration is small. Tm is the temperature
at which the spin directions are fixed by the spin-
spin interaction. When the spin direction is fixed,

∗∗) RKKY interaction is an indirect interaction between two
spins embedded in a metal mediated by the free electrons of
the metal.

the resistance minimum is not seen. This is because,
as mentioned previously, the logT term comes from
spin flip in the intermediate state. In previous sec-
tions we have been assuming that Tm is much lower
than TK. In this case there happens nothing new
when the temperature becomes lower than Tm 
 TK.
When the temperature is lower than TK, the spins
are half up and half down and this state gives rise to a
gain of the energy of the order of kBTK. Since this is
much larger than the spin-spin interaction ≈ kBTm,
the spin state will not be affected by the spin-spin
interaction very much.

On the other hand when the impurity concen-
tration is large and Tm is higher than TK, the sys-
tem first becomes spin glass. When the temperature
is lowered to TK, there occurs nothing new just as
in the previous case. Since the spins are fixed, spin
flip is not possible to give rise to the resistance mini-
mum. The electrical resistivity shows a complicated
temperature dependence for spin glass. Spin glass
behavior is seen when, for example, copper contains
more than 1% of manganese.

Recently substances were discovered where Tm

never exceeds TK even at high concentration of the
impurity. This can happen when TK is intrinsically
high and the spin-spin interaction is small. We men-
tion a typical example of these substances. LaCu6 is
a usual metal and La can be 100% replaced by Ce.
The compound CexLa1−xCu6 takes the same crystal
structure for 0 ≤ x ≤ 1 and Ce has a single f elec-
tron and so has a magnetic moment. Then one may
imagine that at x = 1 the Ce spins may show some
kind of magnetic order, such as ferromagnetism or
so. The temperature dependence of the resistivity of
this system is shown in Fig. 7.6) One sees a resistance
minimum at 9.4% of Ce and at more concentration
of Ce. For concentration more than 50% one sees
a maximum in the resistivity curve below the tem-
perature of the resistance minimum. Surprisingly
one sees a resistance minimum even at 100% of Ce.
This means that the spins are not fixed nor ordered
even at this concentration, otherwise the resistance
minimum would not occur. Above TK the spins are
randomly up or down and this randomness causes
the electrical resistivity. As the temperature goes
down through TK, all the spins will be half up and
half down. Since all the spins are now in the same
state, there is no randomness at all for 100% Ce and
we expect the resistivity finally goes to zero as the
temperature goes to zero. We can see this in Fig. 7.
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Fig. 7. Temperature dependence of the electrical resistivity of CexLa1−xCu6. Resistance minimum is seen for all x > 0 and
a maximum is also seen for x > 0.5.

In this compound Tm is lower than TK for two
reasons. First, the 4f orbital of Ce is singly occupied
and the spin of Ce is 1/2. The spin-spin interaction is
proportional to the square of the spin and so is small.
Second, the 4f orbital is sevenfold degenerate and it
is shown that TK is high for degenerate orbitals. If
two 4f electrons are present, the effect of degeneracy
is weakened and TK will not become high. For this
reason high TK is expected for Ce and Yb. In the
latter case the hole is sevenfold degenerate. In fact
the case of TK higher than Tm is commonly found in
the intermetallic compounds of Ce and Yb.

Another interesting feature of these substances
is the specific heat. As was mentioned in section
5, the specific heat of the magnetic impurity below
TK tends to zero as kBT/TK. If the impurities can
be regarded as isolated even for very high impurity
concentration, then the specific heat should go as
kBT/TK multiplied by the number of the magnetic
impurities. For one mole of the magnetic impurities
this becomes RT/TK (R is the specific gas constant),
which is very large. The molar electronic specific
heat of ordinary metals is of the order of R(kBT/εF),
where εF is the fermi energy of the metal and is usu-
ally about 5 eV or 50000K. On the other hand TK

is several tens degrees Kelvin at most and so RT/TK

is about 1000 times larger than the electronic spe-
cific heat of ordinary metals. Many substances which

show such a large specific heat have been discovered
among Ce compounds. In the case of CeCu6 the coef-
ficient of T of the molar specific heat is 1.5 J/molK2

and very large.
The fermi energy εF of a metal is inversely pro-

portional to the effective mass of the electron in the
metal and if one is going to interprete such a large
specific heat in terms of R(kBT/εF), one can con-
sider that the effective mass of the electron in the
substance is about 1000 times larger than the mass
of the electron. In this sence these substances are
called heavy fermion systems. They are a new sub-
stance and show resistance minimum at high temper-
atures and the atoms like Ce seem to have magntic
moments. But at low temperatures they do not show
any magnetic order and spins of Ce look to have dis-
appeared and they show a very large electronic spe-
cific heat at low temperatures.

7. Conclusion. In this paper we first men-
tioned the theory of the resistance minimum for met-
als involving magnetic impurities. It explained why
the resistivity arising from the magnetic impurity in-
creases as the temperature goes down. In calculating
electrical resistivity quantum mechanically it is nec-
essary to find the matrix element of the transition
for the electron to jump from the initial state to the
final state. If this matrix element depends on the en-
ergy of the electron of the initial state, one obtains a
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temperature dependence of the resistivity. When the
matrix element was calculated in the lowest approxi-
mation as usually done, the temperature dependence
was not obtained. So we considered higher order pro-
cess where the final state was reached vie an inter-
mediate state from the initial state. We found that
the energy dependence of the matrix element is ob-
tained when we take account of the process where
the spin of the magnetic impurity is reversed in the
intermediate state. From this energy dependence a
logT dependence of the resistivity was derived and
a good agreement with experiments was obtained.

When the temperature goes lower than TK, the
correction term becomes of the same order of the
first term and higher order terms are needed and
physics changes drastically across TK. Above TK the
impurity spin is either up or down and changes its di-
rection occasionally. This is the magnetic state and
the susceptibility increases following Curie’s law as
the temperature goes down and the resistivity shows
the logT dependence. Below TK the spin direction
changes rapidly and the spin is in a state of super-
position of up and down spin states. The resistivity
and the susceptibility tend to a constant as the tem-
perature goes to zero.

The above story is for the case of small con-
centration of impurities. In contrast to this case a
new kind of compounds, mainly Ce compounds, was
discovered where the interaction between magnetic
atoms is very small and the atoms behave as are
isolated from other atoms, even for 100% magnetic
atoms. These compounds have an electronic spe-
cific heat which is, in some cases, 1000 times larger
than that of ordinary metals. These are called heavy
fermion systems and are actively studied as a new
substance.
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