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Super strong nuclear force caused by migrating K̄ mesons

- Revival of the Heitler-London-Heisenberg scheme in kaonic nuclear clusters

By Toshimitsu Yamazaki, m.j.a.,∗1,∗2 and Yoshinori Akaishi∗2,∗3

(Contributed by Toshimitsu Yamazaki, m.j.a.)

Abstract: We have studied the structure of K−pp comprehensively by solving this three-
body system in a variational method, starting from the Ansatz that the Λ (1405) resonance (≡ Λ∗)
is a K−p bound state. The structure of K−pp reveals a molecular feature, namely, the K− in Λ∗

as an “atomic center” plays a key role in producing strong covalent bonding with the other proton.
We point out that strongly bound K̄ nuclear systems are formed by “super strong” nuclear force
due to migrating real bosonic particles K̄ a la Heitler-London-Heisenberg, whereas the normal
nuclear force is caused by mediating virtual mesons. We have shown that the elementary process,
p + p → K+ + Λ∗ + p, which occurs in a short impact parameter and with a large momentum
transfer, leads to unusually large self-trapping of Λ∗ by the involved proton, since the Λ∗-p system
exists as a compact doorway state propagating to K−pp.
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1. Introduction

In 1932, right after the discovery of the neutron,
Heisenberg1) tried to explain the nuclear force (for
instance, the proton-neutron interaction) with the
idea of “Platzwechsel” of a migrating particle, which
had been known as the mechanism for the covalency
in the hydrogen molecule, first clarified by Heitler
and London in 1927.2) This “molecule-type bonding”
mechanism can be written as

Heitler-London-Heisenberg: e−p + p ↔ p + e−p.

[1.1]

Since this “e−p” cannot be identified with the neu-
tron for obvious reasons, this idea was unsuccessful,
and was abandoned. Instead of a “migrating real”
particle, Yukawa3) introduced a “mediating virtual”
boson for explaining the nuclear force as

Nuclear force by Yukawa: p ↔ π+ + n, n ↔ π− + p.

[1.2]
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This hypothetical particle was eventually discovered,
and Yukawa’s idea of a mediating virtual particle
was established as the fundamental concept for un-
derstanding all the forces including the electroweak
interaction. In the present paper we point out that
the K̄ meson, as a “real migrating” particle, plays a
unique role in producing strong bonding of nucleons
as

Super strong nuclear force: K−p + p ↔ p + K−p.

[1.3]

One can say that this is the revival of the forgotten
Heitler-London-Heisenberg scheme for nuclear bind-
ing force. In the following sections we describe briefly
how this view has come out from our theoretical
studies of an exotic bound system K−pp. We also
foresee perspectives of this view toward kaon conden-
sation. Preliminary reports of the present results are
documented,4) and their full accounts will be pub-
lished elsewhere.5)

2. Kaonic nuclear bound states

Recently, exotic light nuclear systems involving
a K̄ (K− and K̄0) meson as a constituent have been
predicted based on phenomenologically constructed
K̄N interactions.6)–11) The basic ingredient for this
new family of nuclear states, often called kaonic nu-
clear clusters, is the strongly attractive I = 0 K̄N
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interaction, which accommodates the K−p bound
state, identified to the known Λ (1405) resonance in
the Σπ channel (hereafter, expressed as Λ∗) with a
binding energy of BK = 27 MeV and a width of Γ
= 40 MeV.12) Since the Λ (1405) resonance is largely
populated in the K− absorption at rest in 4He 13)

and also in nuclear emulsion,14) it is very likely to be
the I = 0 K̄N bound state. The K̄N interaction was
also derived theoretically (see, for instance, Refs. 15
and 16).

The most spectacular property of the predicted
kaonic nuclei is in their extremely high densities; the
average density, ρav ∼ 0.5 fm−3, reaches about 3
times as much as the normal nuclear density ρ0 ∼
0.17 fm−3. This is an enormous contrast to the nor-
mal nuclear systems, in which the nuclear density is
always a constant. The K̄ produces extra binding of
nucleons, which overcompensate the stiff nuclear in-
compressibility. In order to understand this feature
we study the most fundamental unit, K−pp.

The lightest system following the “Λ (1405) =
K−p Ansatz”, K−pp, was predicted to exist with
M = 2322 MeV/c2, BK = 48 MeV and Γ = 61
MeV.7) Recently, Faddeev calculations have been
carried out to obtain the pole corresponding to K−pp

by Shevchenko et al.17) and by Ikeda and Sato.18)

Their results are consistent with ours.

3. Structure of K−pp

In our study the ATMS variational method19)

was employed together with the bare K̄N interac-
tion of AY6) and the bare NN interaction of Tama-
gaki.20) The three-body variational wave function of
K̄NN with a number definition (1, 2, 3) = (K̄, N, N)
is given as

Ψ = [Φ12 + Φ13] |T = 1/2〉 [3.1]

where

Φ12 = [f I=0(r12)P I=0
12 + f I=1(r12)P I=1

12 ]

× fNN (r23)f(r31), [3.2]

Φ13 = f(r12)fNN(r23)

× [f I=0(r31)P I=0
31 + f I=1(r31)P I=1

31 ],

[3.3]

with P I=0
12 = (1 − �τK · �τN )/4 and P I=1

12 = (3 + �τK ·
�τN )/4. The functions f I=0(rij) and f I=1(rij) are
scattering correlation functions of the particle pair
(i, j) for the I = 0 and I = 1 K̄N interactions, re-
spectively, and fNN (r23) is that for the NN pair,

and f(rij) is for the off-shell case. The T = 1/2
state consists of two isospin eigenstates as

|T = 1/2〉 =

√
3
4

[
(K̄1N2)0,0 p3

]

+

√
1
4

[
−

√
1
3
(K̄1N2)1,0 p3 +

√
2
3
(K̄1N2)1,1 n3

]
,

[3.4]

where (K̄1N2)I,Iz is for the isospin (I, Iz). Among
these the first term corresponds to Λ∗p.

The predicted structure of K−p and K−pp is
shown in Fig. 1. The “nucleus” pp does not exist,
but the K− can combine two protons into a strongly
bound system, when they are in a spin-singlet state.

The effective potentials as functions of the rela-
tive distances of K̄-(NN) and N -(K̄N) are extracted
from the obtained total wave function, as shown in
Fig. 1 (Left). The distributions of the relative dis-
tances and the momenta of the constituent particle
pairs, namely, K̄-N , K̄-(NN), (K̄N)-N , and N -N ,
were calculated, as shown in the middle. For compar-
ison the K̄-N density distribution in free Λ∗ is also
shown. The N -N rms distance is 1.90 fm, which is
significantly smaller than the average inter-nucleon
distance in normal nuclei (2.2 fm21)), and is much
smaller than the rms distance of p-n in d (3.90 fm).
The rms radius of K̄ with respect to (NN) is 1.35
fm, close to the rms distance of K̄-N in Λ (1405),
1.36 fm.

We compare in Fig. 1 (Right) the K̄-N distance
distribution of the K̄N pair in K−pp, ρK̄−N (K−pp),
with that in Λ (1405), ρK̄−N (Λ∗). The former
(Rrms

K̄−N
= 1.57 fm) is significantly broader than the

latter (1.36 fm). We decompose the density dis-
tribution into the K̄N I=0 and K̄N I=1 parts, as
shown. The I = 0-pair distribution has a shape
closer to ρK̄−N (Λ∗), whereas the I=1 part is widely
distributed due to the smaller attractive interaction.
When K− (1) resides with Proton (2) with a prob-
ability of 0.5, the I=0 component of the wave func-
tion Φ12 in (3.2) dynamically increases to 1 due
to the strong K̄N I=0 interaction. Adding an in-
tensity (0.5 × 1/4 = 0.125) from Proton (3), we
expect the total intensity to be 0.625 ρK̄−N(Λ∗),
which accounts for the calculated ρK̄−N (K−pp) very
well. This means that K− (1) in K−pp resides par-
tially around Proton (2) in a form of Λ (1405), and
partially around Proton (3), as given by the total
wave function. This indicates that the structure of
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Fig. 1. (Upper) Schematic structure of K−p and K−pp. (Lower Left) The effective potentials for relative motions of N-
(K̄N) and K̄-(NN), deduced from the exact variational wavefunction for K−pp. The K̄-N potential in Λ (1405) is also
shown. (Lower Middle) Density distributions of various coordinates in K−pp as well as Λ (1405) = K−p. (Lower Right)
Comparison of the density distributions, r2ρ(rKN ), of the K̄-N distance in the K̄N pair in Λ (1405) and in K−pp. The latter
is decomposed into the I = 0 and I = 1 pairs. The density distribution in Λ (1405) after multiplication of a factor 0.625 is
also shown.

Fig. 2. (Left) The adiabatic potential (V (R) R2), when a proton approaches a bound K−p “atom” (Λ∗), as a function of the
distance between p and p. The Tamagaki potential for the normal VNN interaction is shown for comparison. (Right) The
molecular structure of K−pp. The projected density distributions of K− in K−pp with a fixed p-p distance (= 2.0 fm) and
the corresponding K− contour distribution are shown.
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Λ (1405) is nearly unchanged when it dissolves into
this “nucleus”. In other words, the Λ (1405) state,
though modified, persists in a nuclear system. This
aspect justifies the Λ (1405) doorway model.7)

4. Molecular aspect of K−pp and super
strong nuclear force

The present kaonic nuclear cluster K−pp can be
interpreted as a kaonic hydrogen molecular ion in the
sense that K− migrates between the two protons,
producing “strong covalency” through the strongly
attractive K̄N I=0 interaction. This is essentially the
mechanism of Heitler and London2) for the hydro-
gen molecule, though the nature of the interaction is
totally different and the migrating particle is much
heavier and bosonic. Figure 2 (Left) shows the adia-
batic potential (V (R)R2), when a proton approaches
a Λ (1405) particle, as a function of the p-p distance.
The deep potential indicates that a proton approach-
ing an isolated Λ∗ from a large distance becomes
quickly trapped and dissolved into the bound state
of K−pp.

Figure 2 (Right) shows the projected distribu-
tion of K− along the p-p axis and the contour dis-
tribution of K−, in the case that the p-p distance is
fixed to 2.0 fm (this case resembles the ground state
of K−pp, as the calculated rms distance is 1.9 fm).
The K− is distributed, not around the center of p-p,
but around each of the two protons. The K− distri-
bution is composed of the “atomic” part, as shown by
brown dotted curves, and the exchange part (green
broken curve) a la Heitler and London.

We emphasize that the strong I = 0 K̄N attrac-
tion produces a large exchange integral,∑

{i,j}={2,3},{3,2}
〈Φ1i|vK̄N (12) + vK̄N (13)|Φ1j〉

= −52.6 MeV, [4.1]

which is the source for the deeper binding of K−pp

as compared with K−p. Despite the drastic dynam-
ical change of the system caused by the strong K̄N

interaction the identity of the “constituent atom”,
Λ∗, is nearly preserved because of the presence of
a short-range repulsion between the two protons.
The molecule K−pp resembles a tightly bound Λ∗-p,
which we call Λ∗p doorway in the formation process.

Thus, we have demonstrated that the strong
K̄N attraction produces a very strong molecular
type bonding of the two protons. This adiabatic po-
tential (red curve) as shown in Fig. 2 (Left) can be

called Super Strong Nuclear Force, as compared with
the ordinary nuclear force (green curve). Not only
the depth of the potential, but also the long range at-
tractive part due to the covalent nature and the rela-
tively smaller short-range repulsive part produce an
enormous binding in K̄-migrating nuclear systems,
as shown in Fig. 2 (Left). The “super strong” / “nor-
mal” ratio of the volume integrated strength is 4.1.

5. Dominance of Λ∗p doorway in K−pp

production in NN collisions

We expect that the K−pp state as a Λ∗p com-
posite can be formed in the p + p reaction:

p + p → K+ + (Λ∗p) → K+ + K−pp. [5.1]

The reaction diagram is shown in Fig. 3 (Left). Es-
sentially, the spectral function for K−pp is com-
posed of the following three factors: i) the colli-
sion range 1/mB, taken to be the ρ meson mass;
mB = mρ = 770 MeV/c2, ii) the momentum trans-
fer, Q ∼ 1.6 GeV/c, and iii) the structure function,
depending on the rms distance R(Λ∗p) of the Λ∗-p
system.

The calculated spectral function at Tp = 4 GeV
at forward angle in the scale of E(Λ∗p) = 27 MeV−
BK is presented in Fig. 3 (Right). Surprisingly, in
great contrast to ordinary reactions, the spectral
function is peaked at the bound state with only a
small quasi-free component. This means that the
sticking of Λ∗ and p is extraordinarily large. This
dominance of Λ∗p sticking in such a large-Q reaction
can be understood as originating from the matching
of the small impact parameter with the small size
of the bound state. It is vitally important to ex-
amine our results experimentally. An experimental
observation of K−pp in pp collision may be revealed
in a past experiment DISTO at Saclay22) as well as
in a planned experiment at GSI.23) If a bound-state
peak is found, it will not only confirm the existence
of K−pp, but also prove the compactness of the K̄

cluster.

6. Why does K̄ produce shrunk nuclear
systems?

The constancy of nuclear density, ρ ∼ ρ0 ∼ 0.17
fm−3, which is believed to be almost the nuclear
physics “law”, results from the balance between the
short-range nuclear repulsion and the long-range at-
traction of the ordinary nuclear force. In normal
nuclei the average inter-nucleon distance is
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Fig. 3. (Left) Diagram for the p(p, K+)K−pp reaction. (Right) Calculated spectral shape for different rms distances R(Λ∗p),
arbitrarily chosen. The binding energy of K−pp is set to be 86 MeV for the K̄N interaction which is 17 % enhanced. In this
case, R(Λ∗p) = 1.45 fm is realistic.

Fig. 4. (Left) Speculated K−p = Λ∗ matter with a quasi-Λ∗ as an “atomic” constituent, where K−’s migrate among protons,
producing high-density strange matter. (Right) Speculated diagrams for the density dependences of the bound-state energies
of various baryon composite systems (pK−)mnn. The K̄N energy is represented by the red curve, and the nuclear compression
by the black curve. The total energies for representative fractions of K−/N (=1/2, 1 and 3/2) are depicted by respective
blue curves, showing minima at high density and low energy. Density-dependent enhanced K̄N interactions with relativistic
correction are assumed.

dNN ∼ 2 3

√
3

4πρ0
∼ 2.2 fm, [6.1]

when we adopt Bethe’s estimate based on a close-
packed sphere approximation.21) The nucleon rms
radius, rrms ∼ 0.86 fm, corresponds to a nucleon
volume of vN ∼ 2.66 fm3 and to a nucleon density
of ρN ∼ 0.38 fm−3. This means that nucleons oc-
cupy the nuclear space with a compaction factor of

fc = ρN/ρ0 ∼ 2.3. This situation seems to be almost
unchanged by the normal nuclear force.

The hard core part of the N -N interaction plays
an essential role in keeping the nuclear density con-
stant. In an intuitive picture it is related to the
Pauli blocking in the u-d quark sector. This situ-
ation is common for all hadron-hadron interactions
except for the case of K̄, which, composed of sū

(K−) or sd̄ (K̄0), includes no (u, d) quark. Thus,
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the K̄N interaction is expected to be dominated by
the u-ū and d-d̄ attraction without short-range re-
pulsion. From this consideration we understand in-
tuitively why normal nuclei are difficult to compress
and why only the K̄ meson produces dense nuclear
systems. The intruding K̄ meson, as a “messen-
ger of ū/d̄ quark”, is expected not only to cause
super strong nuclear force by its strong covalency,
but also to relax the NN repulsion due to a kind
of “anti-quark shielding” effect: uud-sū-uud. The
latter effect is not taken into account in our calcula-
tion, where the nucleons are treated as structureless
elementary particles, but will certainly enhance the
super strong nuclear force.

When the nuclear density exceeds the nucleon
compaction factor, 2.3ρ0, an additional effect may
come in, because the QCD vacuum is expected to
vanish and chiral symmetry is restored.24)–26) It is
vitally important to investigate to what extent the
involved hadrons keep their identities in such an ex-
tremely dense system.

7. The super strong nuclear force toward
kaon condensation

We have studied many other kaonic bound
states.8) The strong bonding produced by a single
K̄ was shown to saturate for 3-4 nucleons. We
have also predicted the double-K− clusters.9) The
species, K−K−pp, corresponds to the neutral hy-

Fig. 5. Summary of the three different interaction schemes for nuclear forces. (A) The Heitler-London-Heisenberg model. (B)
The Yukawa interaction. (C) The super strong nuclear force by the K̄ covalency.

drogen molecule, and has a large binding energy
BKK = 117 MeV and a shrunk inter-nucleon dis-
tance, Rrms

N-N = 1.3 fm.9) Expecting that the kaonic
bound states with a large number of K̄ will be more
deeply bound and stable, we proposed to search for
them in high-energy heavy ion reactions.9)

We can conceive a multi-K̄ system, as sketched
in Fig. 4 (Left), where K− mesons migrate coher-
ently among protons. We speculate that the ground
state of such a system shows a large energy gap. The
above consideration naturally leads us to a regime of
kaon condensation.27), 28) Namely, K̄ mesons, as in-
truders with ū and d̄ quarks, behave as strong glue
to combine surrounding nucleons to a dense system.
The whole energy drops down, depending on the
composition of p, n and K̄. Intuitively, one can con-
ceive energy diagrams as shown in Fig. 4 (Right).
There are three phases: the K̄ matter with energy
EK(ρ), the Λ matter with energy EΛ(ρ) and the nor-
mal nuclear matter with EN (ρ). Only the K̄ matter
decreases in energy as the density increases. Then,
there are three regimes for the phase stability.

i) EK(ρ) > EΛ(ρ) : strong decay to Λ′s [7.1]

ii) EN (ρ) < EK(ρ) < EΛ(ρ) :

weak decay : τ ∼ sub-ns [7.2]

iii) EN (ρ) > EK(ρ) : stable [7.3]

Kaonic nuclear clusters in the cases i) and ii) can
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be searched for in laboratory. The case iii) corre-
sponds to a stable kaonic matter which might exist
as a strange star.

In the present paper we have clarified that the
K̄ meson can produce an enormously strong nucleon-
nucleon binding by the Heitler-London-Heisenberg
mechanism. The K̄-migrating NN bonding is deeper
and longer-ranged with relatively smaller short-range
repulsion. This super strong nuclear force can make
ultra dense nuclear systems without the aid of grav-
ity. Figure 5 summarizes the three kinds of nuclear
forces, [1.1], [1.2] and [1.3].
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