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From designer Lewis acid to designer Br�nsted acid

towards more reactive and selective acid catalysis
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�1,�2;y

(Communicated by Hitosi NOZAKI, M.J.A.)

Abstract: This review focuses on the development of acid catalysis for selective organic

transformations conducted in our laboratories for the past 30 years. Several important concepts

in designing of catalysts are described with some examples. Further, recent developments in

super Brønsted acid and their applications in a one-pot procedure to construct complex molecules

with high diastereoselectivities are described.
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Introduction

Generally, main group organometallic has an

empty orbital to accept electrons. This makes the

species highly Lewis acidic (Scheme 1). We spec-

ulate that this singular feature offers unique oppor-

tunities for the creation of numerous new reagents

for selective organic synthesis. For example, the

reactivity of these molecules depends on the choice

of ligand. If the ligand is strongly electron with-

drawing, the resulting metal center will significantly

increase its acidity. If we are able to attach other

metals to the ligands, we also expect to realize highly

reactive species whose reaction will be influenced by

the stereochemical feature of the attached ligands.

Thus, asymmetric synthesis will be possible using

such an acidic catalyst if we can use a chiral

ligand directly connected to the metal center.

Most of our research has been based on these

Lewis acid features of main group molecules, which

are summarized in this review article. This, coupled

with Professor K. Tamao’s research (see accompa-

nying review article), provides a breadth of infor-

mation on the rich chemistry of main group

elements which I am sure has vast potential in

future science of chemistry. In other words, our

research utilizes the stereochemical features of main

group molecules while Professor Tamao focuses on

the electronic characters of these molecules by the

ligands designed.

A proton is very small but highly reactive, and

it is the oldest catalyst for organic synthesis. A

large number of basic organic transformations are

catalyzed by proton. It is a long-standing dream of

synthetic chemists to control the reactivity of

proton and to make it a general synthetic tool of

selective organic synthesis. Described herein is over

30 years of our research in this field.

Aluminum amide: Lewis acid-Lewis
base cooperative system

The Lewis acid-Lewis base cooperative system

(Scheme 2) plays an important role in organic

synthesis. For example, rearrangement from epox-

ides to allylic alcohols is known to proceed with

strong base reagents; this is a typical example of
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an acid-base cooperative system. However, in some

cases, the efficiency of the rearrangement is not

adequately efficient. Rather the rearrangement

was found to proceed smoothly and rapidly using

more oxyphilic aluminum amides.

Diethylaluminum 2,2,6,6-tetrametylpiperide

reacted with the epoxide rapidly and gave the

allylic alcohols highly efficient (Scheme 3).1) The

observed strict regioselectivity originated from the

stereoselective coordination of a sterically less

hindered epoxide lone pair with the nitrogen of

aluminum amide. Thus, the Lewis basicity of nitro-

gen was increased significantly by coordination of

epoxide to aluminum. This is a nice example of an

oxyphilic Lewis acid-Lewis base cooperative reac-

tion system.

These Lewis acid-Lewis base cooperating sys-

tems are not only effective as an intramolecular

system. An intermolecular version of the process

was developed as follows. Reexamination of Beck-

mann rearrangement using organoaluminum re-

agents under aprotic conditions led to the abstrac-

tion of the sulfonyl group, followed by capture of

the intermediary iminocarbocation or alkylidyne-

ammonium ion with the nucleophilic group (X;

R2AlX (X = H, R, SR0, SeR0)) on the aluminum

(Scheme 4). Thus, aluminum reagents act not

only as a Lewis acid but also as a nucleophile.2)

This method opens a new synthetic entry to a

variety of alkaloids such as Pumiliotoxin C.3)

Chiral acetal and its application
in organic synthesis

Chiral acetals derived from aldehydes and

(2R,4R)-2,4-pentanediol are cleaved selectively by

organoaluminum reagents (Scheme 5).4)–8)

The reaction proceeds via the retentive-alkyl-

ation process with >95% selectivity in most cases.

The reaction of acetals derived from (2R,4R)-2,4-

pentanediol and ketones in the presence of a

catalytic amount of aluminum pentafluorophenox-

ide produces reductively cleaved products with high

diastereoselectivity. These reactions (Scheme 6)

are useful means of diastereoselective cleavage

of acetals: an intramolecular Meerwein-Pondorf-

Varley reductive and Oppenauer oxidative reaction

on an acetal template.9)

In sharp contrast, alkylative cleavage of the

same chiral acetals using Lewis acid-alkylmetal

systems and reductive cleavage of the same acetals

using Lewis acid-trialkylsilane or dialkylsilane sys-

tems occur inversely.10)–14) Examples of this concept

in synthesis are shown in Scheme 7. Methods are

heavily dependent on the selective formation of

the intermediary ion pair of Lewis acid (aluminum)

and Lewis base (acetal oxygen).

(�)-Lardolure has been synthesized based on

this discovery (Scheme 8).15) The compound was

prepared straightforwardly by intramolecular cyc-

lization of vinyl ether alcohol derived from spiro-

acetal via triisobutylaluminum and further ring

enlargement of the afforded bicyclic hemiacetals.

In this simple total synthesis, the entire chirality

of the product was transferred exclusively from the

chirality of optically active 2,4-pentanediol.
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Bulky aluminum reagents

Most aluminum compounds in solution exist as

dimeric, trimeric, or higher oligomeric structures.

In contrast, methylaluminum bis(2,6-di-tert-butyl-4-

methylphenoxide) (MAD) and aluminum tris(2,6-

diphenylphenoxide) (ATPH) (Scheme 9) are mono-

meric in organic solvent because of the large frontal

steric effects of bulky ligands. Lewis-acidity of these

reagents decreases with the coordination of more

electron-donating aryloxides, but this can be com-

pensated for by loosening of the aggregation. Com-

pared with classical Lewis acids, the significant steric

effect of our aluminum reagents plays an important

role in numerous selective organic syntheses.16)–18)

Examples: Selective 1,6-addition of alkyllithi-

ums to aromatic carbonyl substrates such as

benzaldehyde or acetophenone was achieved with

ATPH to give functionalized cyclohexadienyl com-

pounds (Scheme 10).19) Based on the molecular

structure of the benzaldehyde-ATPH complex, it

is obvious that the para-position of benzaldehyde

is deshielded by the three arene rings, which

effectively block the ortho-position as well as the

carbonyl carbon from nucleophilic attack. Although

conjugate addition to the ATPH–PhCHO complex

did not proceed effectively with smaller nucleo-

philes, we were able to illustrate that ATPH–

ArCOCl is superior to ATPH–PhCHO for the

nucleophilic dearomatic functionalization. Several

analytical and spectral data showed that the

ATPH–PhCOCl complex was more reactive than

ATPH–PhCHO (Scheme 11).20)

Chiral Lewis acid catalysis

In 1988 an ASI workshop on ‘‘Selectivities in

Lewis acid promoted reactions’’ was held in Greece,

during which I proposed the mechanism of our

asymmetric propargylation reaction using chiral

allenyl boronic ester.21) In an enantioface differ-

entiating process, the chiral nucleophile was added

to the carbonyl group of aldehydes, thus allowing

the preparation of the chiral propargylic alcohols.22)

Based on the anti-coplanar complex structure of

carbonyl-boron-allene moieties, we postulated the

clockwise rotation of the O-C bond prior to C-C

bond formation (Scheme 12).

The reaction scheme shown above demon-

strates that the symmetry element coordinated

on the metal center does have a significant effect

on the direction of the C-O rotation and thus on the

asymmetric induction of the reaction. We therefore

initiated new projects to develop a chiral Lewis acid

catalyst which had C-n symmetry elements.

On this basis chiral Lewis acid catalyst which

has the C-2 symmetry element was designed and

tested for various asymmetric syntheses, and in

1985 we reported a zinc reagent and in 1988 a

bulky aluminum reagent (Scheme 13).23),24) The

zinc reagent was used for asymmetric cyclization

of unsaturated aldehyde and the aluminum reagent

for asymmetric hetero-Diels-Alder reaction with

Danishefsky diene. Both reagents effectively dis-

criminate the enantioface of aldehydes.

This work was the forerunner of a vast

amount of present-day research on the binapthol

based chiral Lewis acid catalyst. Furthermore, we

and other groups have reported various kinds of

chiral Lewis acid catalysts which have C-2 symme-

try elements and all of them have proven quite

effective for asymmetric carbon-carbon bond form-

ing processes.25),26) Not only main group metal

catalysts but also transition metal catalysts having

the C-2 symmetric structure can be used for

asymmetric synthesis via selective activation of

carbonyls.27)
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Combined acid catalysis

In 1988 we reported a chiral Lewis acid catalyst

of an acyloxyboron with a tartaric acid ligand.28)

This was the first chiral Lewis acid catalyst for

aldol, ene, and Diels-Alder reactions. The high

reactivity of the tartaric acid derived catalyst may

originate from intramolecular hydrogen bonding of

the terminal carboxylic acid to the alkoxy oxygen

(Scheme 14). The same catalyst provided the first

asymmetric catalyst of allylation of carbonyl com-

pounds using allyltrimethylsilane.

This was the first example of the ‘‘combined

acids system for asymmetric synthesis’’

(Scheme 15).29) It is known that coordinatively

unsaturated monomers are far more Lewis acidic

than doubly bridged coordinatively saturated di-

mers.30) A mono-coordinated complex, however, can

generate and is even more Lewis acidic than the

monomer through the formation of a singly bridged

dimer. This species is the combined acid catalyst.

It should be emphasized that we anticipated a

more or less intramolecular assembly of such

combined systems rather than intermolecular ar-

rangements. Thus, proper design of the catalyst

structure is essential for success. The concept of

combined acids (Scheme 16), which can be classi-

fied into Brønsted acid assisted Lewis acid (BLA),
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Lewis acid assisted Lewis acid (LLA), Lewis acid

assisted Brønsted acid (LBA), and Brønsted acid

assisted Brønsted acid (BBA), can be a useful tool

for designing asymmetric catalysis, because com-

bining such can bring out their inherent reactivity

by associative interaction, and also provide a more

organized structure, both of which allow the secur-

ing of an effective asymmetric environment.

BLA: Scheme 17 exemplifies another boron

based BLA which achieves high selectivity through

the double effect of intramolecular hydrogen bond-

ing interaction and attractive �–� donor-acceptor

interaction in the transition-state.31)

LLA: Reactive Lewis acid-assisted Lewis acid

(LLA) catalysts are relatively well known. Elec-

tron-deficient metal compounds can be further

activated as electrophiles through hetero- and

homodimeric associative interaction. However, full

recognition of this synthetically powerful tool does

not yet appear to be widespread. It may be further

extended to include an asymmetric catalysis design.

Scheme 18 is an example of LLA of chiral boron

reagent activated by various achiral Lewis acids

including SnCl4, AlCl3, FeCl3, and others.32)

LBA: Combining Lewis acids and Brønsted

acids to give Lewis acid-assisted Brønsted acid

(LBA) catalysts can provide an opportunity to

design a unique chiral proton60. Namely, the

coordination of a Lewis acid to the hetero atom

of the Brønsted acid could significantly increase

its original acidity. An example is shown in

Scheme 19.33)

BBA: Hydrogen bonding can frequently be

observed inside enzymes, and such a weak inter-

action has/plays a crucial role in organizing their

three dimensional structure. Additionally, the hy-

drogen bonding is often involved in the reaction

inside the active site of an enzyme. Such an elegant

device could be applicable to asymmetric catalysis.

Especially for Brønsted acid catalysis, the design

of these catalysts would result not only in formation

of a highly organized chiral cavity but also in an

increase in the Brønsted acidity of the terminal

proton in a much milder way than that of the

LBA system (Scheme 20).34)

Br�nsted acid as a new tool
for asymmetric synthesis

Brønsted acid will be an even more important

catalyst in future because it is environmentally

benign. Generally, Brønsted acid which is stronger
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than 100% sulfuric acid is called super Brønsted

acid by Gillespie.35) The vast potential of these

reagents in the application to lithium batteries and

fuel cells is well recognized. Scheme 21 shows a

developing trend towards even more environmen-

tally friendly but highly acidic reagents. Further-

more, the sterically larger conjugate base of such

an super acid system creates a soft reagent, an

important feature for organic reactions.

Once highly acidic Brønsted acids are in hand,

we can also use it as en effective Lewis acid catalyst

for various organic transformations. This is simply

because the metal attached to such a super con-

jugate base makes the metal site very reactive.

The broad utility of these reagents has been

demonstrated by simple Mukaiyama aldol reaction

as shown in Scheme 22 in which only 1mol% of

catalyst is necessary for the reaction.36)
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Although the real catalyst in this scheme is

not Brønsted acid but Me3SiNTf2, the high reac-

tivity of this acid catalyst came from the high

reactivity of Tf2NH.37) The trifluoromethane-

sulfonyl (triflyl, Tf) group is one of the strongest

neutral electron-withdrawing groups. In particular,

it greatly increases the acidity of hydrogen atoms

at �-positions. The steric and electronic factors

of the aromatic ring on arylbis(triflyl)methanes

are expected to greatly influence their Brønsted

acidity and their catalytic activity and selectivity

for organic reactions. We have developed strong

carbon Brønsted acids, pentafluorophenylbis-

(triflyl)methane and polystyrene-bound tetrafluoro-

phenylbis(triflyl)methane based on this concept

(Scheme 23).38) The synthesis of the resin-bound

Brønsted acid has been accomplished by using the

nucleophilic para-substitution reaction of lithium

pentafluorophenylbis(triflyl)methide with lithiated

polystyrenes as a key step. This is the first example

of a highly acidic heterogeneous Brønsted acid

catalyst that is effectively swollen by non-polar

organic solvents, and, because of its organic solvent

swellable feature, its catalytic activities are much

superior to those of Nafion� SAC-13.39)

As described above, super Brønsted acid cata-

lyst and super silyl catalyst are inextricably linked.

This comes from the quick generation of silyl Lewis

acid from super Brønsted acid and silyl enol ether

(or allylsilane). Since Me3SiNTf2 is a moisture

sensitive reagent, a small amount of water in the

reaction mixture causes its decomposition to give

Me3SiOH and HNTf2. Me3SiOH will react with

Me3SiNTf2, and provide inert Me3SiOSiMe3 and

HNTf2. The regenerated HNTf2 will readily react

with allyltrimethylsilane, and provide Me3SiNTf2
again.39) The repetition of this cycle should produce

strictly anhydrous conditions, and thus this

catalytic cycle constitutes a self-repair system for

Lewis acid catalysis (Scheme 24). The same cata-
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lytic repair system can also be effective with silyl

enol ether.

The trimethylsilyl (TMS) group is a widely

used protecting group and Lewis acid, as well as an

important functional group in certain substrates.

For these reasons we deemed the TMS group to be

‘‘generation one’’. As described earlier (Scheme 22)

we have demonstrated that the use of triflimide as a

catalyst initiator is very effective for the aldehyde

cross-aldol reaction.40) The success of this reaction

proved to be maximal with the use of triflimide

as the catalyst as well as the use of tris(trimethyl-

silyl)silyl (TTMSS) enol ethers (Scheme 25).41) The

use of the TTMSS group, also referred to as the

super silyl group, is one of the keys to this reaction

and its unique reactivity caused us to consider it as

a second generation silyl group.

The exceptional diastereoselective ‘‘control’’

and high reactivity of the TTMSS (Super silyl)

group can be attributed to the two classic argu-

ments of sterics and electronics. The TTMSS group

is extraordinarily bulky, and has been reported to

shield molecular skeletons effectively. After the first

addition and silyl transfer, the steric encumberment

of this group is likely to kinetically slow down the

addition of a second equivalent of nucleophile to a

rate that does not compete with the rate of the first

addition. When all of the aldehyde starting material

has been consumed, a second addition occurs giving

the products with high diastereoselectivity. After

this second addition occurs, the aldehyde has �- and

�-TTMSSoxy groups and if catalyst coordination

occurs, the complex is likely too bulky for further

additions (Scheme 26).

Intrigued by TTMSSNTf2 catalysis, we used
29Si NMR as an indicator of silicon Lewis acidity

and found that the central silicon of TTMSSNTf2
was shifted significantly down-field (>6 ppm) com-

pared to TMS- and TBSNTf2, and only slightly

down-field from pentamethyldisilane-NTf2 (62.2,

55.9, 55.5, and 60.8 ppm, respectively). This trend

shows a considerable difference in the cationic

nature of silyl groups with only silicon-carbon

bonds versus those with silicon-silicon bonds. This

high reactivity of silyl enol ether as well as super

silyl cation is probably due to the high homo level

of the Si-Si and Si-C sigma bond.

With this outstanding one pot aldol reaction in

hand, since the tris(trimethylsilyl)silyl (TTMSS)

Second Generation

HOTf HNTf2

TMS TTMSS

Super Brønsted acid

Super Silyl

First Generation

Scheme 25.

Me3SiNTf2

HNTf2

SiMe3

SiMe3 HNTf2+

excess

H2O

Me3SiOH

Scheme 24.

TTMSSO O

R
+

HNTf2 (0.05 mol%)

CH2Cl2, rt, 15 min

OTTMSS

R

TTMSSO
OHC

(2.2 equiv) (1.0 equiv)

TTMSSO O

R
+

HNTf2 (0.05 mol%)

CH2Cl2, rt, 15 min

OTTMSS

R
OHC

(1.0 equiv) (1.0 equiv) high yield

high yield
high diastereoselectivity

Scheme 26.
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silyl enol ether undergoes aldehyde cross-aldol

reactions with high selectivity and the extremely

low catalyst loading (0.05mol% of HNTf2), we

can proceed for one-pot sequential reactions where

acidic or basic nucleophiles can subsequently be

added. Various ketone-derived silyl enol ethers,

Grignard reagents, and dienes succeeded successful,

generating relatively complex molecular architec-

tures in a single step (Scheme 27). This represents

the first case where, in a single pot, highly acidic

conditions followed by very basic conditions were

tolerated to give products with high diastereoselec-

tivities and good yields.42)

Even more recently we have shown that the

process can be used for enol ether of ketones which

can be generated by carbon centers diastereselec-

tively in one pot. Scheme 28 shows examples of this

reaction as a ‘‘four-component one-pot coupling

reaction’’.43)
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