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1. Introduction

Almost sixty years have passed since the

transistor was born in an experimenral study of

the electrical conduction on a germanium surface in

Bell Telephone Laboratories.1) Since then, a lot of

studies have been made on the electrical transport

at the surface space charge layers in semiconduc-

tors.2)

Electrical transport phenomena associated

with surfaces of solids have been well known in

thin films of metals.3) Two scattering mechanisms of

conduction electrons at the surface, namely the

specular scattering and the diffuse scattering at the

surface, are well known. It is known that the surface

diffuse scattering, or the surface roughness scatter-

ing, plays a role in metallic thin films.

In semiconductor surface space charge layers,

it has been observed that the mobility of conduction

electrons and holes in both the surface inversion

layers and the surface accumulation layers decreas-

es with the increase in their concentrations. In 1955,

Schrieffer explained this phenomenon by introduc-

ing the surface diffuse scattering or the surface

roughness scattering into the theory of electron

mobility in the semiconductor surface space charge

layers.4) However, when the thickness of the surface

space charge layer is thin enough compared with

the wave length of electrons or holes in the surface

space charge layer, the effect of the quantization of

motion in the very thin layer may reduce the effect

of the surface scattering.5)–7) In a thin surface space

charge layer with a high electric field perpendicular

to the surface (z-direction), the electron motion

in z-direction is quantized like E0, E1 and so on as

shown in Fig. 1(a). When the electrons are free in

the motion parallel to the interface (xy plane), the

energy of the electrons is given by

E ¼ En þ
h�2

2m� ðk
2
x þ k2yÞ; n ¼ 0; 1; 2;� ½1�
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Fig. 1. In a triangular potential well near the surface of an

inversion layer in a p-type semiconductor (EcðzÞ: the bottom

of the conduction band, EF : the Fermi level), the kinetic

motion of electrons perpendicular to the surface (z-direction)

are quantized as E0, E1 and electrons fill the states with 2-

dimensional freedom up to the EF as shown in (a). When there

is the surface diffuse scattering for electrons, the quantization

of the electron motion disappears and the electrons fill

the states with short mean free paths up to the Fermi level

as shown in (b).
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where m� is the electron effective mass, kx and

ky are components of the wave vector for the motion

in the plane parallel to the surface, and Enðn ¼
0; 1;��Þ is the electronic quantum level arising

from confinement in the thin triangular-like

quantum well. Each value of En is the bottom of

a two-dimensional electron system (2DES), or a

two-dimensional electron gas (2DEG), called a 2D-

subband. The 2DES is characterized by its constant

density of states given by

D2 ¼
gsgvm

�

2�h�2
½2�

where gs and gv are the spin and the valley

degeneracy.

When a high magnetic field B is applied

perpendicular to the 2-dimensional plane in a

2DES, the two dimensional free electron motion is

converted to a set of quantized Landau levels

with an energy splitting h�!c ¼ h�eB=m�. The num-

ber of electrons in a magnetic quantum level is

equal to the density of states, D2, times the Landau

level splitting, h�!c which is equal to eB=h in the

case where gs ¼ 1 and gv ¼ 1.

In the International Conference on Physics

of Semiconductors in Kyoto, 1966, Fowler et al.8)

reported magnetoconductance oscillations against

the change in the gate voltage in a Corbino disk

geometry of a Si-MOSFET where the peaks of the

oscillation are uniformly spaced against the change

in the gate voltage. This behavior shows clearly

that the electron system in the Si-MOSFET is

a 2DES. In the same conference, Kawaji and

Kawaguchi9) reported experimental results of elec-

tron mobility measurements in an n-type inversion

layer on a p-type InAs as shown in Fig. 2. They

compared the results with calculated values based

on a two-dimensional version of the Conwell-

Weisskopf10) formula for ionized impurity scatter-

ing. The impurity scattering model in a 2DES

explained well the exprimental result at 4.2K.

In 1967, Stern and Howard11) discussed theo-

retically basic electronic properties of 2DES in Si-

MOSFETs and an n-channel inversion layer on a p-

type InAs. On the latter, they calculated the

electron mobility at absolute zero in an inversion

layer on uncompensated p-type InAs with 6� 1011

interface Coulomb scatterers per cm2, the value

estimated by Kawaji and Kawaguchi for their

sample if all the centers are singly charged, and

for several values of bulk-acceptor concentration

NA. The results are shown in Fig. 3 together with

the mobilities measured by Kawaji and Kawaguchi

on a sample with 2:6� 1016 net acceptors per cm3.

Over the experimental range, their calculated

mobility has the same dependence on Ns as does

the measured mobility, and is larger by about a

factor of 2. Since there is no adjustable parameter in

the calculation, the agreement is quite good.

An excellent review on electronic properties of

Fig. 2. In an n-type inversion layer of a p-type InAs surface,

the electron mobility at 4.2K increases with the increase in

the surface concentration of electrons, Ns. This behavior can

be explained by the decrease in the cross section of the

scattering by charged impurities with the increase in the

Fermi energy of the 2D electrons.9)

Fig. 3. Stern and Howard11) calculated the low temperature

mobility associated with screened Coulomb scattering by

known charges in an inversion layer of a p-type InAs surface in

the Born approximation. Their results are in good agreement

with Kawaji and Kawaguchi’s experimental results at 4.2K9)

shown by dots in the figure.
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2DES is presented in 1982 by Ando, Fowler and

Stern.12)

Here, the author introduces basic properties of

the 2DES based on these articles.11),12) As shown in

Fig. 4(a) on Si-MOSFETs, an insulator film (SiO2)

is sandwiched between a metal film, called the gate,

and a silicon substrate. In an n-channel device, a

current can flow between two heavily doped nþ-
type contacts S and D, called the source and the

drain, respectively, only when an n-type conduction

layer (channel) is produced on the surface of p-type

Si substrate adjacent to the SiO2 film, by supplying

a positive gate voltage VG against the Si substrate

which is usually in equillibrium with the source.

The conduction layer is called the inversion layer

because the conduction type is inverted from the

substrate.

In a GaAs/AlxGa1�xAs(x ’ 0:3) heterostruc-

ture system, called a HEMT (high electron mobility

transistor),14),15) an n-type conduction layer is

produced on the surface of undoped GaAs adjacent

to a thin undoped GaAs/AlxGa1�xAs layer as

shown schematically in Fig. 4(b).

The bottom of the conduction band of GaAs in

the wave number space is a sphere; i.e. the

conduction band is isotropic. However, the bottom

of the conduction band in Si is anisotropic and

consists of 6 ellipsoids of revolution along the h100i
axis as shown in Fig. 5. Electron effective mass

along the h100i axis m‘ and that in a plane

perpendicular to the h100i axis mt are given in unit

of free electron mass m as m‘ ¼ 0:916m and

mt ¼ 0:190m as schematically shown in Fig. 5. In

the electrostatic potential in the inversion layer, the

ground 2D subband E0(m‘) consists of two ellip-

soids (nv ¼ 2) with m‘ ¼ 0:916m as schematically

shown in Fig. 5. In the inversion layer on Si(111)

surface, the valley degeneracy is considered to be 6,

as 6 ellipsoids in the conduction band are equiv-

alent.

As Stern and Howard11) described, three effec-

tive masses are necessary to describe the electronic

properties of the inversion layer. One is m3, the

mass which determine energy levels En(n ¼ 0,1,2,–)
for motion perpendicular to the surface. The other

two,m1 andm2, are the principal effective masses of

the constant energy ellipse associated with motion

parallel to the surface. For (100) surface of Si, two

of the six bulk constant-energy ellipsoids will

give m3 ¼ m‘, the longitudinal effective mass of

the bulk, while the other four will give m3 ¼ mt, the

transverse bulk effective mass. We list in Table 1

the values of masses m1, m2 and m3 for the

conduction band in the n-type inversion layer of

Si for three high symmetry surface orientations,

and in each case the valley degeneracy nv is

given for the number of ellipsoids of the bulk

having equivalent set of values of electrons in the

inversion layer. When two different values ofm3 are

used, the solution of the Schroedinger equation

belonging to the larger mass will have the lower

energy level than the solution belonging to the

smaller mass.

Fig. 4. Schematic structure and energy level diagram (a) Si-

MOSFET and (b) GaAs/AlxGa1�xAs heterostructure.13)

Fig. 5. Schematic energy level diagram of an n-channel inver-

sion layer in a Si-MOSFET on a Si(001) surface. The bottom

of the lowest 2D subband E0ðm‘Þ arises from that m‘ � mt. D

and Dn are density of states without and with a strong

magnetic field perpendicular to the inversion layer. The

Landau quantum number is denoted by n. Each Landau level

with the same n splits into four Landau levels: " and # refer to

parallel and antiparallel spin to the field, þ and � refer to

lower and higher valleys.13)
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Stern and Howard11) gives an approximate

expression

gðzÞ ¼ 1

2
b3z2expð�bzÞ ½3�

for the charge distribution when only the lowest

inversion layer energy level is occupied. The

parameter b is given by a variational calculation as

b ¼ ð½48�e2m3=�sch�
2�½Ndepl þ ð11=32ÞNs�Þ1=3 ½4�

where Ndepl and Ns are the concentration of charges

in the depletion layer per square and the electron

concentration in the inversion layer per square,

respectively. The average value of z, weighted by

the charge distribution given by Eq. [3], is z0 ¼ 3=b.

Stern and Howard11) studied bound states

in 2D systems. Their results for the most simple

case are the following. If the electrons in the

inversion layer have an isotropic effective mass

m� ¼ m1 ¼ m2, if there were no screening by the

inversion-layer electrons, if the inversion-layer

charge distribution gðzÞ were a delta function at

the interface between the semiconductor and the

insulator, and if the Coulomb center of charge e

were also at the interface, then the effective

potential energy would be

�e ���ðrÞ ¼ �e2=���r ½5�

where

��� ¼ ð�sc þ �insÞ=2 ½6�

is the average of the dielectric constants in the

semiconductor and the insulator. The solution of a

2D Schroedinger equation with the 2D potential

given by Eq. [5] leads the eigenvalues of the infinite

set of (2n� 1)-fold degenerate levels

En ¼ �ðn� 1=2Þ�2Ry� ½7�

where the unit of energy is the effective Rydberg

Ry� ¼ m�e4=ð2���2h�2Þ ½8�

and the quantum number n takes on the values

0; 1; 2; . . .. The ground state envelope function is

 ¼ ð8=�Þ1=2a ��1 expð�2r=a�Þ ½9�

where

a� ¼ ���h�2=m�e2 ½10�

is the effective Bohr radius.

The numerical values of z0, a
�, and Ry� are

given by Ando, Fowler and Stern12) as

z0ðnmÞ ¼ 2:283
1012 cm�2

N�

� �1=3
�sc

11:5

� �1=3

�
0:916m0

m3

� �1=3

½11�

a�ðnmÞ ¼ 3:203
�sc

11:5

� �
0:19m0

m�

� �
½12�

Ry�ðmeVÞ ¼ 43:60
m

0:19m0

� �
7:7

���

� �2

½13�

where N� ¼ Ndepl þ ð11=32ÞNs, and 7:7 ¼ ð�sc þ
�insÞ=2 in a Si-MOSFET.

In the following, the author describes the

progress in experimental research into the under-

standing of the quantum transport in surface and

interface channels carried out in Gakushuin Uni-

versity over the last forty years in which the author

was personally involved. To begin with, structures

of samples of the 2DES are shown in Fig. 6 which

shall be used for measurements of the transport

properties of the 2DES in the following sections.

In the next section, a two-dimensional semi-

conductor which has a two-dimensional conduction

band and two-dimensionally distributed donor

atoms is described. Then two-dimensional electron

systems in weak magnetic fields which brought us

the birth of the quantum transport in a 2DES at low

temperatures are described. In Section 3, a metal-

insulator transition is described. In Section 4, two-

dimensional electron systems in strong magnetic

fields including the quantum Hall effect (QHE) are

described. In Section 5, high precision meaurements

of the quantized Hall resistance and new inter-

national electrical reference standard based on the

QHE are described. In Section 6, experiments on

activation energies in 1/3 and 2/3 fractional

quantum Hall effects (FQHE) are described. In

Table 1. Effective masses for three surface orientations for n-

type silicon inversion layers.11Þ mt ¼ 0:190m0, m‘ ¼ 0:916m0

Surface m1 m2 m3 nv

(100) mt mt m‘ 2

mt m‘ mt 4

(110) mt ðmt þm‘Þ=2 ð2mtm‘Þ=ðmt þm‘Þ 4

mt m‘ mt 2

(111) mt ðmt þ 2m‘Þ=3 ð3mtm‘Þ=ðmt þ 2m‘Þ 6
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Section 7, breakdown of the QHE and collapse of

the quantized Hall resistance are described. Con-

cluding remarks are given in the final section.

2. Two-dimensional electron systems

in weak magnetic fields

2.1. A two-dimensional semiconductor

with a two-dimensional conduction band and

donor atoms in a plane. A two-dimensional (2D)

semiconductor with a 2D conduction band and a 2D

plane of donors was studied by Kawaguchi.16) He

used an n-channel Si-MOSFET with a Corbino disk

electrode structure as shown in Fig. 6(a). He etched

off a metal gate-electrode and a subsequent oxide

film as shown in Fig. 7(left), and evaporated Cs

atoms on the naked Si Corbino disk by heating a

cesium carbonate film on a tungsten filament in

vacuum. Then the conductance on the Si surface

between the source- and the drain-electrode in-

creases with the increase in the adsorption of Cs

atoms as shown in Fig. 7(right). The surface con-

ductance increases rapidly at NCs � 8� 1011 cm�2

in a (111) Si surface and at NCs � 1:5� 1012 cm�2 in

a (100) Si surface. These behaviors of the surface

conductance of Si against the increase in adsorbed

Cs atoms can be explained by a following process.

On an etched Si surface, there are surface

energy levels arised from broken chemical bonds. Cs

donor levels appear above these surface levels.

Electrons in the adsorbed Cs atoms fill at first the

surface levels arised from the broken surface bonds.

Then electrons are thermally activated to the

conduction band in the Si surface inversion layer.

Temperature dependence of the surface resistivity

with adsorbed Cs atoms shows thermally activated

conduction as shown in Fig. 8. Figure 8 shows

that the activation energy of the adsorbed Cs atoms

ECs decreases with the increase in the number of

Fig. 6. Four examples of electrode structures of 2-dimensional

electron systems with freedom in the xy-plane and a magnetic

field in z-direction. Electrode S and electrode D in each

sample, are the source-eletrode and the drain-electrode,

respectively. Sample (a) is a Corbino disk which can measure

directly the diagonal conductivity �xx. Sample (b) is a long

Hall bar for Hall voltage measurement by two Hall electrodes,

H and H0. Sample (c) is a wide Hall current bar for Hall current

measurement by shorting two Hall electrodes H and H0.
Sample (d) is a short Hall bar for measurements of Hall voltage

and conductance.13)

Fig. 7. A naked Corbino disk with a source- and a drain-

electrode on a Si and a Cs2CO3 source (left). Surface

conductivity increases with the adsorption of Cs atoms

(right).16)

Fig. 8. Temperature dependence of the surface resistivity in a

Cs-adsorbed p-type Si surface.17) Adsorbed Cs atom concen-

trations NCs(10
12 cm�2) for the sample number 2, 5, 10, and 17

in the circles are 1.0, 2.1, 3.5 and 8.0 respectively.
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adsorbed Cs atoms NCs.

It is well known by Pearson and Bardeen’s

classic experiment18) that the activation energy EA

of acceptor atoms in p-type Si decreases with the

increase in acceptor concentration NA as expressed

by EA ¼ EI0 � aN
1=3
A where EI0 is the ionization

energy of an isolated acceptor. Their result in a 3-

dimensional system shows that the activation

energy of acceptors has a decreasing term which

is inversely proportional to the average distance

between acceptor atoms.

In the present 2D system which consists of a 2-

dimensional conduction band in an n-type inversion

layer on a p-type Si surface and 2-dimensionally

distributed Cs donors on the surface, it is expected

that the activation energy of Cs donors has a

decreasing term which is inversely proportional to

the average distance between Cs atoms.

As shown in Fig. 9, the activation energy in the

present 2D system is given by

ECs ¼ EI0 � bN
1=2
Cs ½14�

where EI0 is the ionization energy of an isolated

donor in the 2DES and the bN
1=2
Cs is the term

inversely proportional to the average distance

between Cs atoms. A straight line is given by

ECsðmeVÞ ¼ 96� 4:1� 10�5NCsðcm�2Þ1=2.
When we use ��� ¼ ð11:8þ 1Þ=2 ¼ 6:4 and the

density of state mass for m� as m� ¼
ffiffi
ð

p
m1m2Þ ¼ffiffi

ð
p

mtðmt þ 2m‘Þ=3Þ ¼ 0:358m0 for a 2DES in

Si(111) surface inversion layer, we have a� ¼
9:5A, Ry� ¼ 119meV and Eq. [7] for n ¼ 0 leads

EI0 ¼ 4Ry� ¼ 476meV. Experimental result of EI0

is EI0ðexpÞ ¼ 96meV. In the case when there is

a distance d between the 2DES and a donor, the

binding energy of a donor is reduced. Stern and

Howard11) calculated numerically the effect of

distance between the 2DES and charged centers

and effect of screening. Following the result in

Fig. 5 in Stern and Howard’s paper,11) we have

EI0 ¼ 0:8Ry� ¼ 95meV for the case d ¼ 1:3a� with-

out screening effect. The result explains the present

experimental result.

The present experimental result is a 2D version

of the activation energy which depends on the

impurity concentration observed for Si bulk semi-

conductors as EI ¼ EI0 � aN
1=3
I by Pearson and

Bardeen,18) where EI is the activation energy of

donors and acceptors whose concentration is given

by NI. Thus, the Cs-adsorbed Si surface is consid-

ered to be a 2D semiconductor with a 2D con-

duction band and two-dimensionally distributed

donors.

2.2. Quantum transport in a 2DES in weak

magnetic fields: weak localization in silicon

inversion layers. In 1978, Kawaguchi, Kitahara

and Kawaji19) carried out experiments on a 2DES in

the metallic conduction in Cs-adsorbed Si surfaces

which show interesting transport properties at low

temperatures as shown in Fig. 10. Temperature

dependence of the resistivity in Fig. 10(a) is de-

scribed by �ðT Þ ¼ a� blogT . The resistivity de-

creases with a magnetic field applied perpendicular

to the 2D plane (negative magnetoresistance) as

shown in Fig. 10(b).

The 2-dimensional nature of the negative

magnetoresistance in the 2DES can be more clearly

shown by the angle dependence of the magnetic field

observed in the Si-MOS(111) inversion layer shown

in Fig. 11. The results of an experiment carried out

in 1984 for a 2DES in a GaAs/AlGaAs heterostruc-

Fig. 9. Adsorbed Cs atom concentration dependence of the

activation energy of surface resistivity in a Cs-adsorbed p-type

Si surface.16)

Fig. 10. Experimental results in Cs-Si(111) n-channel inver-

sion layers at low temperatures.19) (a) Temperature depend-

ence of resistivity. (b) Magnetic field dependence of negative

magnetoresistance.
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ture also show clearly the 2D nature of the negative

magnetoresistance (see also Fig. 16).

Understanding of the experimental results

shown by Figs. 10 and 11 was made possible by

weak localization effect in a 2DES. A theoretical

framework for weak localization including a mag-

netic field effect on the weak localization was

established in 1979.21)–28) Characteristic properties

of the weak localization in normal 2D systems are

the following: (1) The conductivity decreases with

decreasing temperature T with a term proportional

to logT , and (2) an external magnetic field perpen-

dicular to the 2D system increases the conductivity.

The scaling theory of localization by

Abrahams, Anderson, Licciardello and

Ramakrishnan22) derived that the conductivity �

in the weakly localized regime where �F �=h� � 1, �F
and � being the Fermi energy and elastic scattering

time, respectively, is given with a correction term

��L by

� ¼ �0 þ��L: ½15�

Here �0 ¼ Nse
2�=m� is the Drude conductivity.

We summarize here a temperature dependent

correction term for the conductivity in the weak

localization in a 2DES following Anderson,

Abrahams and Ramakrishnan23) as given by

��LðT Þ ¼
�pe2

2�2h�
logT ½16�

where � is a numerical constant and p is the

exponent in the temperature dependence of the

inelastic scattering time �� given by

��ðT Þ / T�p: ½17�

We note here that the Si conduction band

consists of six equi-energy ellipsoids in k-space

(nv ¼ 6. See Fig. 5). Therefore, � in Eq. [16] should

be replaced by nv� when the inter-valley scattering

time �i is longer than the inelastic scattering

time ��.

The logT dependent electrical resistivity in

Fig. 10(a) leads the coefficient �p ¼ 0:98 in Eq. [16]

for the sample in the upper most line given by open

triangles and �p ¼ 0:81 for the sample in the lower

most line given by filled triangles. The present

2DES is electrons in an n-type inversion layer on a

Si(111) surface. Therefore, the coefficient �p should

be given by nv�p where nv is the valley degener-

acy.29),30) However, if the inter-valley scattering

time of the electrons is shorter than the inelastic

scattering time, the number nv should be given as

nv ¼ 1. Thus, we can understand that nv�p ’ 1 in

the 2DES in n-channel Si inversion layers.

In 1980, Bishop, Tsui and Dynes31) reported

their result of the logT dependent electrical resis-

tivity in an n-channel Si inversion layer of a

Si-MOSFET on a Si(100) surface observed at

low temperatures 0:1K < T < 1K and found that

�p=2 ¼ 0:51� 0:05. Their result has also shown that

nv�p ’ 1 which gives that the intervalley scattering

time is much shorter than the inelastic scattering

time ��.

Hikami, Larkin and Nagaoka25) derived explicit

expressions of negative magnetoresistance for the

cases which include the spin-orbit scattering and

magnetic scattering by impurity spins in a 2DES.

Their theory gives the change in the conductivity

of a 2DES by application of a magnetic field B as

��HLNðBÞ ¼
nv�e

2

2�2h�
�

1

2
þ

1

a��

� ��

��
1

2
þ 1

a�

� �
þ log

��

�

�
½18�

where � is the Digamma function and a ¼ 2DeB=h

for the diffusion coefficient of electrons D. Here, a�

is given by the electron mean free path ‘ and the

radius of the ground Landau orbit ‘B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh�=eBÞ

p
as

a� ¼ 2‘2

‘2B
¼

�0ðmhoÞ	B
1:93� 10�5nv

: ½19�

Experimental results obtained for a Si-MOSFET by

Kawaguchi and Kawaji32) were well explained by

Hikami, Larkin and Nagaoka’s theory expressed by

Eq. [18]25) as shown by the magnetic field depend-

ences of ��ðBÞ at 4.2K and 12.1K in the left

in Fig. 12, and a temperature dependence of the

Fig. 11. Angular dependependence of the negative magneto-

resistance in a Si-MOS(111) inversion layer where 
 ¼ 0 at B k
surface and 
 ¼ 90� at B ? surface.20)
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inelastic scattering time �� in the right in the same

figure. See also an article.33)

2.3. Measurements of electron tempera-

ture and electron-phonon interaction in 2DES

in Si-MOSFETs. The negative magnetoresistance

in the weak localization of electrons is controlled by

inelastic scattering. The inelastic scattering time ��
has a strong temperature dependence as given by

�� / T�p; 1 	 p 	 3. Therefore, the inelastic scatter-

ing time can be used as a thermometer for the

temperature of electrons in non-equillibrium with

the lattice.

Kawaguchi and Kawaji34) applied the negative

magnetoresistance effect to measurement of elec-

tron temperature in Si-MOS inversion layers at

high electric fields for evaluating the deformation

potential constants in electron-phonon interaction.

As will be discussed later, the inelastic scattering at

liquid helium temperatures refers to electron-elec-

tron scattering. Therefore, we can estimate electron

temperature of the 2DES in a thermally nonequi-

librium state with the lattice by �� extracted from

the negative magnetoresistance data.

Figure 13 shows the magnetoconductivity of

a Si(001) MOS inversion layer with peak mobility of

11,000 cm2/V
s at 4.2K at various source-drain

field ESD at lattice temperature TL of 4.2K. Similar

magnetoconductivity measurements were made at

TL ¼ 1:1K. The inelastic scattering time �� is

determined from the magnetoconductivity at differ-

ent ESD by use of the HLN theory (Eq. [18]). The

electron temperature Te at different ESD is eval-

uated from the T -dependence of �� measured at

ESD ¼ 1V/cm. Then, ESD-dependence of the elec-

tron temperature Te at two lattice temperatures

TL ¼ 4:2K and TL ¼ 1:1K are shown in Fig. 14. At

TL ¼ 4:2K, the change in the electron temperature

due to the variation in ESD between 40V/m and

800V/m is about 14K. For this change in the

electron temperature, the inelastic scattering time

changes almost one order of magnitude as shown

in Fig. 12.

In a stationary state at a high source-drain

field, the rate of energy gain per electron from

electric field, �0E
2
SD=Ns, is equal to the rate of

energy loss to the lattice system, �d�=dt. The

energy loss per electron from the electron system

to the lattice by electron-surfon scattering35) was

calculated by Shinba et al. (see the reference 34 and

the reference 36) by using the deformation potential

constants of bulk silicon, �u ¼ 12 eV, D ¼ �d=�u ¼
�0:67. Figure 15 shows the experimental data of

�0E
2
SD=Ns (open and solid circles) and calculated

value of �d�=dt (solid lines) as a function of

(Te � TL). Agreement between theoretical results

and experimental results shows that the deforma-

Fig. 12. Left: Magnetic field dependence of the magnetocon-

ductivity of a Si-MOSFET.32) Experimental data (dots) are

fitted to Hikami, Larkin and Nagaoka’s theory.25) Right:

Temperature dependence of the inelastic scattering time ��
extracted from the magnetoconductivity.32)

Fig. 13. Magnetic field dependence of the change in the

conductivity ��ðBÞ of a high mobility Si(100) MOSFET

inversion layer for different source-drain electric field ESD.
34)

Fig. 14. Source-drain electric field dependence of the electron

temperature in a high mobility Si(100) MOSFET inversion

layer at two lattice temperatures measured by negative

magnetoresistance effect.34)
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tion potential constants in the inversion layer are

almost the same as the silicon bulk values.

2.4. Further studies on quantum transport

in weak localization in 2DES in GaAs/

AlxGa1�xAs(x ’ 0:3) heterostructures. The

electron system in an GaAs/AlxGa1�xAs(x ’ 0:3)
heterostructure interface is the simplest 2DES if Ns

is sufficiently small to maintain single 2D subband.

In particular, in order to make clear understanding

of the inelastic scattering time, measurements of

the negative magnetoresistance in the GaAs/

AlxGa1�xAs 2DES are necessary by following

reasons: (1) The present system is free from the

intervalley scattering effect (nv ¼ 1). (2) The spin

Zeeman effect is small due to the small g-factor of

the conduction electrons. (3) The mutual interac-

tion effect can be minimized by analysing the

magnetic field dependence of the conductivity at

the weak field limit. However, experimental studies

so far carried out on the weak localization have not

necessarily derived reasonable results.37),38)

Nambu et al.39) made careful measurements

of magnetoconductivity in 2DES in GaAs/

AlxGa1�xAs(x ’ 0:3) heterostructures with low

electron mobilities. Angular dependence of magne-

toconductivity in Fig. 16 shows that the present

system is an ideal 2DES for the study of the weak

localization.

Nambu et al.39) employed samples with low

elecron mobilities such as 	(sample 399(I)) =

2.1m2/V
s and 	(sample 354A(B)) = 4.1m2/V
s.
Experimental magnetoconductivity data are fitted

to Hikami, Larkin and Nagaoka’s formula with

nv� ¼ 1 given by Eq. [18] in the magnetic field

region lower than 10 Gauss (a� < 0:15) as shown in

Fig. 17(Left). They discussed their experimental

results of �� based on the theoretical results by

Fukuyama and Abrahams.40)

In 1984, Kawabata41) developed a theory of

negative magnetoresistance in a 2DES which is a

two-dimensional version of his theory of negative

magnetoresistance in three dimensional systems

presented in 1980.42)

Fig. 15. Te (electron temp.) � TL (lattice temp.) dependence of

energy gain per electron �E2
SD=Ns from the source-drain

electric field ESD measured at TL ¼ 4:2K (filled circles) and

at TL ¼ 1:1K (open circles) measured in a high electron

mobility Si(100) MOSFET and the energy loss per electron to

the lattice �ðd�=dtÞ calculated by Shinba and Nakamura (See

the ref. 36).

Fig. 16. A 2DES in GaAs/AlxGa1�xAs heterostructure shows

clearly two-dimensional nature of the negative magnetoresist-

ance in the angle dependence of the change in the conductivity

in magnetic fields.39),46)

Fig. 17. Left: Magnetic field dependence of the magnetocon-

ductivity of a GaAs/AlxGa1�xAs(x ’ 0:3) 2DES.39),43),46)

Numerical errors in the ordinate in Fig. 4 in Ref. 39 have

been corrected in this figure. Experimental data (dots) are

fitted to Hikami, Larkin and Nagaoka’s theory.25) Right:

Magnetic field dependence of the magnetoconductivity of a

GaAs/AlxGa1�xAs(x ’ 0:3) 2DES.43),46) Experimental data

(dots) are fitted to Kawabata’s theory.41)
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As shown by Kawabata,41) Hikami, Larkin and

Nagaoka theory (HLN thoery) for negative magne-

toresistance in 2DES is correct when the relation

!c� � h�=�F � � 1 ½20�

is fulfilled where !c, �F and � are cyclotron

frequency, Fermi energy and momentum relaxation

time of electrons. Since the parameter h�=�F � must

be small enough in order that the weak localization

theory is correct, HLN theory is applicable only to

the regions of very weak magnetic field.

Kawabata’s theory41) is valid when the condi-

tion

!c�; h�=�F � � 1; ½21�

is fulfilled. This condition is applicable to much

wider region of magnetic field where a� 	 1 than

HLN theory.

Nambu et al.’s experimental results of magne-

toconductivity were fitted to Kawabata’s theory

in a wide magnetic field region as shown in

Fig. 17(Right) where we have a� ¼ 1 near the

maximum field.

The temperature dependence of the inelastic

scattering time �� extracted from the field depend-

ence of the magnetoresistance is shown by open

circles in Fig. 18.43),44) In Fig. 18, the theoretical

results of the inelastic scattering time ��(th)
43) is

calculated based on Fukuyama and Abrahams.40)

Agreement between the inelastic scattering time

extracted from experimental results by Kawabata’s

theory shown by and the theoretical results ��(th)

shown by is excellent.

Kawabata’s theory is also applied to fit mag-

netoconductivity data in Si 2DES.45)

Other topics and future problems are discussed

in 1986.46)

3. Metal-insulator transition in 2DES in

Si-MOSFETs and spin-degree of freedom

A Si-MOSFET is an interesting 2DES whose

electron concentration can be controlled between

zero and about 1017 m�2 by application of a gate

voltage. One of the interesting phenomena observed

in this system is a metal-insulator transition (MIT)

which occurs at a finite concentration of electrons

in a 2DES.

Okamoto et al.47) have clearly observed an

important role of the spin degree of freedom in the

MIT in a Si-MOSFET. In Fig. 19, the diagonal

resistivity �xx of a high electron mobility 2DES

(	max ¼ 2:4m2/V
s) in a Si-MOSFET is shown at

five temperatures between T ¼ 0:31K and T ¼
1:32K for different electron concentrations Ns. In

zero magnetic field, no temperature dependence is

observed in the resistivity �xx at Ns ’ 1� 1015 m�2.

In the lower Ns region, Ns < 1� 1015 m�2, the

resistivity increases with decreasing temperature.

In the higher Ns region, Ns > 1� 1015 m�2, the

resistivity decreases with decreasing temperature.

The critical value of �xx at the MIT is 55 k�. This

value is close to �c � 2h=e2 reported by Kravchenko

et al.48) When a magnetic field, B ¼ 9T, is applied

Fig. 18. Temperature dependence of the inelastic scattering

time in a GaAs/AlGaxAs1�x heterostructure interface.
43),44) :

�� determined by Kawabata’s theory in Fig. 17(Right). : ��
determined by Hikami, Larkin and Nagaoka’s theory in

Fig. 17(Left). : calculated ��(th).
43),46)

Fig. 19. Diagonal resistivity as a function of electron concen-

tration for different temperatures in a zero magnetic field

(closed symbols) and in a magnetic field of B ¼ 9T applied

parallel to the 2D plane.47)
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parallel to the 2D plane, the resistivity increases

with the decrease in the temperature in the whole

Ns region in this figure or the metallic phase

disappears. The disappearance of the metallic

phase is caused by the Zeeman splitting effect of

the conduction electrons.

Figure 20 shows magnetic field dependences of

the resistivity �xx of the 2DES in the Si-MOSFET

used in Fig. 19 measured at T ¼ 0:21K for different

electron concentrationsions 0:89� 1015 m�2 	 Ns 	
2:12� 1015 m�2. Here, the magnetic field is applied

parallel to the 2D plane and the unit Bc is the

critical magnetic field where the spin polarization

p reaches p ¼ 1. The critical magnetic field Bc

is described in detail by Okamoto et al.47) The

diagonal resistivity �xx increases with Btot in the

low-Btot region, but it takes almost constant values

in the high-Btot region. The saturation of �xx occurs

around Btot ¼ Bc at which the polarization is

expected to be completed. The result indicates that

the mixing of the different spin states causes the

reduction of �xx in the low-Btot region. The dashed

line represents the critical value of �xx at the MIT.

It was tentatively determined by the sign of the

change in �xx from T ¼ 0:21 to 0.91K. The positive

temperature dependence of �xx below 1K was not

observed for Btot > Bc. The positive T dependence

of �xx in the low Btot region may arise from the

scattering related to the spin degree of freedom.

Suppression of the metallic behavior by a

strong magnetic field applied parallel to the 2D

plane has been reported for 2D hole systems in

GaAs/AlGaAs heterostructures.49)

Okamoto et al.50) measured magnetotransport

on a silicon 2D system in a Si/SiGe quantum well

with a mobility two orders higher than Si-MOS

samples. In this system, the metallic behavior

remains even in an in-plane magnetic field. In the

2D hole systems in GaAs/AlGaAs heterostructures,

the internal degree of freedom is spin only. How-

ever, the internal degree of freedom of valleys in Si

conduction band remains in a 2D electron system

in a Si-quantum well when a strong magnetic field

is applied parallel to the 2D plane. Okamoto et al.

have proposed a schematic phase diagram for T -

dependence of � in low-resistivity and strongly

correlated 2D systems in a plane disorder vs gsgv
where gs is the spin degree of freedom and gv is the

valley degree of freedom.

4. Two-dimensional electron systems

in strong magnetic fields

4.1. Landau levels and Anderson localiza-

tion in 2DES in strong magnetic fields. When a

strong magnetic field B is applied in z-direction in a

2DES in xy plane as shown in Fig. 5, the energy

levels of the 2DES are quantized to Landau levels

given by

�n ¼ nþ
1

2

� �
h�!c; n ¼ 0; 1; 2�� ½22�

where !c ¼ eB=m� is the cyclotron angular fre-

quency of an electron. The radius of the cyclotron

motion of an electron with the Landau quantum

number n is given by

‘n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
‘B ½23�

where ‘B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh�=eBÞ

p
is the radius of the cyclotron

orbit of an electron in the ground Landau level.

Degeneracy of a Landau level is given by

NL ¼
eB

h
½24�

as a product of the density of states D2ðgs ¼ 1;

gv ¼ 1Þ and the Landau level splitting h�!c.
Quantities given in Table 2 (Table 1 in the

references 13, 43) show that 1K is low enough

temperature to realize the extreme quantum-limit

condition in an n-channel Si(001) MOS inversion

layer in the field of 10T so far as the separation of

Landau levels with different Landau quantum

number is concerned. A schematic energy level

diagram of an n-channel inversion layer in a

Fig. 20. Resistivity �xx vs Btot=Bc at T ¼ 0:21K and B? ¼ 0

for various Ns. The dashed line represents the critical value

of �xx at the MIT determined from temperature dependence

between 0.21 and 0.91K.47)
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Si-MOSFET on a Si(001) surface is shown in

Fig. 5. An n-channel inversion layer in GaAs/

AlxGa1�xAs(x � 0:3) heterostructure interface is

more easy to realize the extreme-quantum-limit

condition than Si-MOSFET as the structure of

the conduction band in GaAs is simple and the

electron effective mass is small.

By use of a Corbino disk, Kawaji and

Wakabayashi51) have performed careful experi-

ments on the finite gap regions in the gate voltages

for the vanishing �xx with various source-drain

electric fields and investigated the magnetic field

dependence and the Landau level index dependence

of the concentration of immobile electrons or

localized electrons. The diagonal conductivity �xx
in a Si-MOSFET in B ¼ 14T at T ¼ 1:4K for

various source-drain electric fields is shown in

Fig. 21. The magnetic field dependence of the width

of the gate voltage for the vanishing conductivity

region (�xx < 10�9 mho) has shown that the sum of

the concentration of immobile or localized electrons

associated with the higher edge of the (n� 1)-th
Landau level and the lower edge of the n-th Landau

level, where n is the Landau level quantum number,

is approximately given by ½2�‘2Bð2nþ 1Þ��1 as

shown in Fig. 22 where ‘B is the radius of the

ground Landau orbit. This result means that the

electron wave functions become extended or pinned

correlated states become free when the whole

area of the inversion layer is covered by cyclotron

orbits with radius of ð2nþ 1Þ1=2‘B.
In such a system in the extreme-quantum-limit

condition, there exist gap regions in the density of

states between the boundary of each Landau level.

When random potentials are incorporated in the

system, localized states are expected to exist near

lower and higher edges of each Landau level. If the

range of the random potential � is much longer than

the radius of a Landau orbit ‘n ¼ ‘Bð2nþ 1Þ1=2, it is
easy to see that centers of Landau orbits near the

bottoms and tops of the random potentials move

along closed trajectories lying in equi-potential

lines. When the range of the random potentials is

short (� < ‘n), they also produce localized states

near the lower and higher edges. These localized

states exhibit exponential localization. Extended

states which exist near the center of each Landau

level are expected to show a different behavior from

those in the absence of magnetic fields.

The first experiment of Shubnikov-de Haas

effect in Si-MOSFETs by Fowler, Fang, Howard

and Styles8) has shown the existence of gap regions

in the gate voltages where the diagonal conductiv-

ity �xx vanishes in strong magnetic fields. Fowler

et al. employed samples of Corbino disks on

Table 2. Quantities related to transport properties in 2DES in

an n-channel Si(001) inversion layer and an n-channel GaAs

inversion layer in a strong magnetic field. The radius of the

ground Landau orbit is given by ‘0ðAÞ ¼ 256:6=BðTÞ1=2 and

the degeneracy of a Landau level is given by eB=hðm�2Þ ¼
2:418� 1014BðTÞ

Quantity Si(001) GaAs

h�!cðKÞ=BðTÞ 7.070 19.75

�SCBAðKÞ½	ðm2/VsÞ=BðTÞ�1=2 5.642 15.76

�� ðKÞ	ðm2/VsÞ 3.536 9.880

g	BðKÞ=BðTÞ 1.344 0.349

Fig. 21. Gate voltage dependence of the diagonal conductivity

�xx of a Si(001) MOS inversion layer in B ¼ 14T at T ¼ 1:4K

for various source-drain fields FSD.
51)

Fig. 22. Magnetic field dependence of the concentration of

immobile electrons associated with the higher edge of the

(N-1)-th Landau level and the lower edge of the Nth Landau

level.51) N = n in this figure.
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Si(001) MOS inversion layers for their measure-

ments. As shown in Fig. 6, the Corbino disk is

the only electrode structure for measurement of

the diagonal conductivity �xx in any strength of

magnetic field or in any value of the Hall angle from

zero to �=2.

Kawaji and Wakabayashi measured temper-

ature dependence of �xx in the lower edge of the

lowest Landau level in a Si(001) inversion layer in a

MOSFET in a magnetic field B ¼ 9:75T at temper-

atures between 1.5K and 4.2K and observed

activation type temperature dependence.52) They

used a model to describe the experimental results

based on a quantum diffusion of Schottky defects

in a Wigner crystal in the 2DES.

4.2. Measurements of the Hall conductivity

in a 2DES in strong magnetic fields. Ando,

Matsumoto and Uemura53) have developed a theory

of Hall effect in a 2DES in strong magnetic fields.

Their results at T ¼ 0 are summerized as follows:

(1) The Hall conductivity �xy is given by

�xy ¼ �
Nse

B
þ

�

h�!c
�xx ½25�

where � is the Landau level broadening.

(2) The Hall conductivity is not affected by

the presence of impurities when each Landau level

is completely filled and the Hall conductivity is

given by

�xy ¼ �
ie2

h
½26�

when the Fermi level lies in energy gap between the

ith and (iþ 1)-th Landau levels.

(3) In the case of impurity bands being

separated from each Landau level, the Hall con-

ductivity is given by Eq. [26] when the Fermi level

lies in any spectral gap lying between the i-th and

the (iþ 1)-th main Landau level, i.e. when the

Fermi level lies in gaps between two impurity bands

or between an impurity band and the main Landau

level.

Schematic presentation of the theoretical re-

sults described above is shown in Fig. 23(a) with

Ando’s prediction of the quantized Hall conductiv-

ity in (b).

Igarashi, Wakabayashi and Kawaji55),56) carried

out measurements of the Hall effect in a strong

magnetic field using a wide Hall bar in Fig. 6(d).

From measured source-drain current ISD and Hall

voltage VH, they derived the diagonal conductivity

�xx and the Hall conductivity �xy by use of Wick’s

solution for the Hall electric field distribution.57)

Their experimental results in 9.8 T at 1.6K ap-

proximately confirmed Ando et al.’s theoretical

results. However, the observed difference between

Nse=B and ��xy is much larger than �xx�=h�!c
where � is calculated by Ando and Uemura’s

result of self-consistent Born approximation.58)

Wakabayashi and Kawaji59) made further measure-

ments of the Hall conductivity and the diagonal

conductivity in a strong magnetic field using a long

Hall bar in Fig. 6(b). However, discrepancy exists

between the experimental results and theoretical

results by Ando et al.53)

By employing the Hall current method using a

wide Hall current bar, the sample (c) in Fig. 6,

Wakabayashi and Kawaji60) have first confirmed

experimentally Ando et al.’s result (1) for the Hall

conductivity as described in the following.

The Hall current bar has the length between

the source electrode and the drain electrode L ¼
100 mm. The width of these electrodes is W ¼
1000 mm and the distance between two Hall current

electrodes is W0 ¼ 1200 mm. In the Hall current

method, they keep a constant source-drain voltage

VSD and measured the source-drain current Ix and

the Hall current Iy between short-circuited Hall

current electrodes H and H0. By employing

Wick’s method,57) they calculated h� function and

Fig. 23. (a) Schematic presentation of theoretical results of

the Hall conductivity and the diagonal conductivity versus

the filling factor of Landau levels by Ando, Mtsumoto and

Uemura.53) (b) Ando’s prediction of the quantized Hall

conductivity and the localization of electrons in Landau

levels.54)
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g� function against tan 
H ¼ �xy=�xx as shown in

Fig. 24. These two functions lead the following two

relations.

Iy

Ix
¼ h�L=W

�xy

�xx

� �
½27�

Ix

VSD
¼ �xxg

�
L=W

�xy

�xx

� �
: ½28�

They determine �xy=�xx by use of measured value

of Iy=Ix for the h� function. They determine �xx
by measured value of Ix=VSD and g�L=W ð�xy=�xxÞ
using Eq. [28]. Then, they can determine �xy.

Figure 25(a) shows experimental results of Ix and

Iy as a function of VG in a low mobility sample

N9-8H53. Figure 25(b) shows �xy and �xx derived

from (a). In the Fig. 25(b), a solid line in �xx is a

result measured by a Corbino disk. A solid curve in

�xy in Fig. 25(b) is a calculated result by Eq. [25]

where � is replaced by �SCBA which is calculated by

Ando and Uemura’s result of the self-consistent

Born approximation.58) The Hall conductivity �xy
measured by the Hall current method agrees well

with the theoretically calculated �xy.

In the Oji International Seminar held in

Hakone in 1980, Kawaji and Wakabayashi61) pre-

sented precise behaviours of the diagonal and Hall

conductivities and their temperature dependence

observed in a magnetic field 15T at temperatures

between 1.5K and 7.7K as shown in Fig. 26.

Figure 27 shows the results at 1.5K which clearly

demonstrates the quantized steps in the Hall

conductivity for 2e2=h in the Landau gap between

the ð0 " �Þ level and the ð0 # þÞ level and for 4e2=h
in the Landau gap between the ð0 # �Þ level and the

ð1 " þÞ level.62) (See Fig. 5 for the Landau level

index ðn; "# �Þ.)
The quantized Hall conductivity in Fig. 27

demonstrates the characteristic feature of the

electron-hole symmetry; i.e., near the spin gap,

the Hall conductivity becomes 2e2=h when the

Fermi level lies in the localized states in the

upper edge of the ð0 " �Þ level even if the ð0 " �Þ
level is not completely filled or when the holes in

the ð0 " �Þ are localized as well as the case where

the electrons in the ð0 # þÞ level are localized or the

Fermi level lies in the localized states in the lower

edge of the ð0 # þÞ level.
The quantized Hall steps and the electron-hole

symmetry in the Anderson localization in Landau

Fig. 24. Wick’s h� function in Eq. [27] and g� function in Eq.

[28] calculated against �xy=�xx for the Hall current bar with

the length L ¼ 100mm, the width W ¼ 1000 mm and the

distance between two Hall current electrodesW0 ¼ 1200mm.60)

(a) (b)

Fig. 25. (a) Measured source-drain current Ix and Hall current

Iy in a sample N9-8H (peak mobility: 3800 cm2/Vs), (b) the

Hall conductivity �xy and the diagonal conductivity �xx
determined from the results in (a) by Wick’s method given

by Eq. [27] and [28] and results in Fig. 24.60)

Fig. 26. Hall conductivity �xy and diagonal conductivity �xx vs

gate voltage VG in the lowest four Landau levels in a Si(001)

MOS inversion layer in a magnetic field B ¼ 15T at temper-

atures T ¼ 1:5K � 7:7K.61)
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levels in 2DES have long been expected by Ando et

al.’s theory of the Hall effect in 2D systems as shown

in Fig. 23. One of the important conclusion reached

by Ando et al.53) is their result (3) which is obtained

for the case where the impurity bands are separated

from the main Landau level. The single-site ap-

proximation which Ando et al. employed has led the

impurity bands separated from the main Landau

level. However, the localized states exist actually

near the edges of each Landau level instead of

the impurity bands. Therefore, it is easy to expect

the appearance of the quantized Hall plateaus and

the electron-hole symmetry in the localization in

Landau levels in 2D systems. Let us imagine a

situation where there are many impurity levels

separated from each other with very small gaps near

the edges of each Landau level and these impurity

levels have no electrical conduction.54) Then we can

expect the quantized Hall plateaus and the elec-

tron-hole symmetry from Ando et al.’s result (3).

4.3. Correlation between diagonal and Hall

conductivities of Si(001) MOS inversion layers

in strong magnetic fields. In the nonlinear �

model in a theoretical study of localization in

2DES in strong magnetic fields, Levine, Libby and

Pruisken63) assumed that the diagonal conductivity

�xx and the Hall conductivity �xy are independent

scaling variables. Ando and Aoki showed that there

is a correlation depending on the Landau quantum

number between the diagonal conductivity �xx and

the Hall conductivity �xy.
64)–67)

Yamane, Wakabayashi and Kawaji68) studied

correlation between �xx and �xy in Landau levels

ð0 # þÞ, ð0 # �Þ, ð1 " þÞ, ð1 " �Þ, ð1 # þÞ and

ð1 # �Þ in Si(001) MOS inversion layers in magnetic

field of 15T at six temperatures between 1.5K and

0.35K. The sample used was an n-channel Si-

MOSFET on a (001) surface of a p-type substrate

with resistivity of 100�-cm. The peak electron

mobility is 14,000 cm2/V
s at 1.5K. Measurements

were carried out by Hall current method. As an

example, ð�xx;��xyÞ plots of the experimental

results for the gate voltages in the ð0 # �Þ Landau

subband are shown in Fig. 28. The (�xx;��xy)
points obtained at three temperatures below

0.87K in 15T lie on a single curve. The crosses

obtained at 0.35K in 14T lie on the same curve.

This result demonstrates that the diagonal conduc-

tivity correlates with the Hall conductivity at low

temperatures. A feature of this figure is that the

diagonal conductivity �xx is symmetrical to the

Hall conductivity ��xy.
Other (�xx;��xy) plots for ð0 # þÞ, ð1 " þÞ,

ð1 " �Þ, ð1 # þÞ and ð1 # �Þ Landau subbands show

that there exist correlation between �xx and �xy.

Their experimental results are consistent with

numerical studies by Ando and Aoki64)–67) which

show that the diagonal and the Hall conductivities

are not independent scaling variables in Anderson

localization in Landau subbands in a 2DES.

4.4. Temperature dependence of Anderson

localization in Landau levels: effective mobility

edge. Anderson localization in Landau levels or

Landau subbands43) plays very important roles in

Fig. 27. Hall conductivity �xy and diagonal conductivity �xx vs

gate voltage VG in the lowest four Landau levels in a Si(001)

MOS inversion layer in 15 T at 1.5K.62)

Fig. 28. Diagonal conductivity �xx versus Hall conductivity

�xy in the ð0 # �Þ Landau level in a Si(001) inversion layer.68)
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the quantum Hall effect (QHE) as shown in Fig. 26

and Fig. 27.

Kawaji, Wakabayashi and Moriyama69) tried to

analyze the localization based on a mobility edge

model. Moriyama and Kawaji70) discussed temper-

ature dependence of the mobility edge derived from

experimental temperature dependence of d�xy=dNs

or d�xy=dVG. When the localization is so strong that

the contribution from the �xx term to the �xy is very

small, d�xy=dNs is a useful quantity in the analysis

of experimental results. Figure 29 shows �xx, �xy
and d�xy=dNs against gate voltage in the n ¼ 0

Landau levels in a Si(001) inversion layer.70)

Wakabayashi, Yamane and Kawaji71) meas-

ured temperature dependence of the Hall conduc-

tivity in a Si(001) inversion layer at temperatures

1.5K, 1.1K, 0.87K, 0.65K, 0.50K and 0.35K in a

magnetic field B ¼ 15T. They studied localization

in ð0 # �Þ and ð1 " �Þ Landau subbands. To find the

mobility edge Ec refered to the center of the Landau

subband by a model calculation which reproduces

the experimental line shape of d�xy=dNs vs Ns at

each temperature, they used a density of states

given as

DðEÞ ¼ ðeB=hÞð2=�Þ1=2��1expð�2ðE=�Þ2Þ ½29�

where � is the broadening of the Landau subband.

The change in the Hall conductivity is assumed to

be given by

��xyð�; T Þ ¼ �ðe2=hÞnMð�; T Þ=NM ½30�

where � is the filling factor, nM is the number of

electrons in the delocalized states and NM is

the total number of the delocalized states. They

assumed that the density of states and the mobility

edges are symmetric with respect to the center of

the Landau subband and that the broadening �

does not change with �. The temperature depend-

ence of Ec=� which reproduces dð��xyÞ=dNs for the

ð0 # �Þ Landau subband is plotted on a log-log scale

in Fig. 30. For the ð1 " �Þ Landau subband, their

simple model cannot reproduce dð��xyÞ=dNs as a

whole. Therefore, Ec=� values which can reproduce

the lower shoulder of the dð��xyÞ=dNs curve at

temperatures below 0.87K are plotted against T in

the figure. When we describe the temperature

dependence of Ec=� as Ec=� / Tq by the straight

lines in Fig. 30, we have q ¼ 0:25 for the ð0 # �Þ
Landau subband and q ¼ 0:15 for the ð1 " �Þ
Landau subband.

The energy dependence of the inverse local-

ization length �ðEÞ has been studied by Ando,64)

Aoki and Ando65),67) and Ando and Aoki.66) Their

results show that

�ðEÞ / jEjs ½31�

where the critical exponent s has been shown to

be s 	 2 for the Landau level with the quantum

number n ¼ 0 and s 	 4 for n ¼ 1.
As Aoki and Ando67) discussed, a cutoff length

L� which destroys the localization in a Landau

subband at finite temperatures is given by

L� � ð��=�Þ1=2‘B ½32�

where �� is the inelastic scattering time, � the

relaxation time related to the broadening � by �� ’

Fig. 29. Diagonal conductivity �xx, Hall conductivity �xy and

�d�xy=dNs (Ns electron concentration) against gate voltage

VG in the N ¼ 0 Landau levels in a Si(001) inversion layer.70)

Fig. 30. Temperature dependence of the mobility edge Ec
normalized by the broadening � in the ð0 # �Þ and the ð1 " �Þ
Landau subband. Exponent q in Ec=� / Tq is 0.25 and 0.15 in

the ð0 # �Þ and the ð1 " �Þ Landau subband, respectively.71)
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h� and ‘B the radius of the ground Landau orbit.

When we combine Eq. [31] and [32] assuming

�� / T�p, the temperature dependence of the mobi-

lity edge is expected to be

Ec=� / Tp=2s: ½33�

When we use s ¼ 2 for the ð0 # �Þ Landau

subband and s ¼ 4 for the ð1 " �Þ Landau subband,

the results in Fig. 30, i.e. q ¼ 0:25 for the ð0 # �Þ
Landau subband and q ¼ 0:15 for the ð1 " �Þ
Landau subband, give us p ¼ 1:0 for the former

and p ¼ 1:2 for the latter.71)

Results of temperature dependence of �� so far

studied in weak magnetic fields for Si inversion

layers have shown that p ¼ 1 � 1:8 depending on Ns

and T .46) The present results are in good agreement

with these numbers for the exponent p.

5. High precision measurements of quantized

Hall resistance and new international

electrical reference standard based on QHE

5.1. High precision measurements of quan-

tized Hall resistance by ETL-GU. In 1980, von

Klitzing, Dorda and Pepper72) made a high preci-

sion measurement of the quantized Hall resistance

RHð4Þ ¼ h=4e2 in a Si(001) MOS inversion layer and

confirmed the quantization in precision of 3.8 ppm

to the recommended values of the fundamental

physical constants.

In the same year, Electrotechnical Laboratory

(ETL) and Gakushuin University (GU) group

carried out high precision measurements of the

quantized Hall resistance RHð4Þ of Si-MOSFETs. A

result of high precision measurements of RHð4Þ by

Yamanouchi et al. (ETL-GU)73) is shown in Fig. 31.

The sample they used is a Hall bar of a Si-MOSFET

whose structure is shown in Fig. 6(b). The sample

has an oxide thickness of 200 nm, a total length of

600 mm, width of 100 mm and a peak electron

mobility of 13,600 cm2/V
s. At gate voltages be-

tween 14.4V and 14.6V, RPP0 ¼ 4�xx ðLPP0 ¼
400 mm;W ¼ 100 mmÞ passes through a minimum

(’ 5� 10�4 Ohm) ( �RRPP0 ’ 5� 10�3 �) and RH

passes a plateau, RH ¼ 6453:2024� 0:0008�. We

remark here that tan 
H ¼ �xy=�xx ’ 5� 106 with


H being Hall angle. The variation of the filling

factor � of one Landau level corresponding to

�VG ¼ 14:6V� 14:4V is ��ð�xx ’ 0Þ ’ 6%, and

the variation of � for the Hall plateau is much

larger than it.

Yamanouchi et al.73) also reported the results of

measurements of source-to-drain resistance RSD ¼
VSD=ISD as well as Hall resistance in a large square

Hall bar (L ¼W ¼ 1600 mm) as shown in Fig. 32.

In the n ¼ 4 case, the average value of RSD and

RH are almost equal, i.e., ( �RRSD � �RRHÞ= �RRH ¼
ð�0:15� 0:36Þ ppm, which is within the random

uncertainty of measurements. It is remarked here

that this result shows clearly the resistance between

highly doped electrodes and the 2DES in the

inversion layer to be very small. Figure 33 shows

a schematic diagram of potential distribution in a

long Hall bar in the quantum Hall effect condition.

Yamanouchi reported their results in June 8–

12, 1981 in the meeting on Precision Measurements

and Fundamental Constants held in National

Bureau of Standards (NIST at present) in USA.

All the papers presented in the meeting were

published in 1984 as given by the reference 73.

Yoshihiro et al. (ETL-GU)74) extended meas-

Fig. 31. Results of high precision measurements of quantized

Hall resistance RHð4Þ and transverse resistance RPP0 , in the

gap between ð0 # �Þ and ð1 " þÞ Landau levels in an n-channel

Si(001) MOSFET.62),73)

Fig. 32. Quantized Hall resistance RHð4Þ and source-to-drain

resistance RSDð4Þ, in the gap between ð0 # þÞ and ð1 " þÞ
Landau levels in an n-channel Si(001) MOSFET.73)
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urements of quantized Hall resistances to RHð8Þ ¼
h=8e2 and RHð12Þ ¼ h=12e2 at temperature T ’
0:5K in the magnetic fields B ¼ 9:0T and 10.5 T.

Figure 34 shows the Hall resistance RHðiÞ and

transverse resistance RPP0 ðiÞ plotted against VG
around i ¼ 8 and i ¼ 12 in the VG region around the

minimum of RPP0 ðiÞ. Here RH ¼ �xy ’ �1=�xy and

RPP0 ¼ ð‘=wÞ�xx where ‘=w ¼ 4 for the present

sample. It has been found the values of �xx at

T ’ 0:5K are about two orders of magnitude small-

er than those at T ’ 1:3K. The quantized Hall

resistance plateau corresponding to i ¼ 8 and i ¼ 12

looks flat within the resolution of measurement,

’0:001�, in contrast to the previous experiment.

The absolute values of RH are subject to

systematic uncertainties of the unit of 1� main-

tained at the ETL. However most of these uncer-

tainties are canceled in the ratio of RH’s when the

measurements are made on the same sample. A

possible change in the unit of quantization is thus

detectable to the precision nearly limited by the

resolution of measurement. The ratios with their 1�

uncertainties are given as

2� �RRHð8Þ= �RRHð4Þ ¼ 0:99999993� 0:00000018;

2� �RRHð8Þ9T = �RRHð4Þ ¼ 1:00000005� 0:00000019;

3� �RRHð12Þ= �RRHð4Þ ¼ 0:99999994� 0:00000024:

Here �RRHð8Þ9T is the mean value of RH(8)

measured at B ¼ 9T, and the uncertainties include

the estimated systematic uncertainty of � 0:15
ppm. An important result of Yoshihiro et al. (ETL-

GU) is that the unit of quantization of ��xy is thus
experimentally verified to be constant to within

the accuracy of present measurement independently

of the quantum number or the concentration of

electrons in the inversion layer, that implies,

independently of the change in scattering proper-

ties, interaction between carriers, and number and

character of localized states.74)

After a series of measurements taken over two

years, Kinoshita et al.75) found an interesting result

as shown in Fig. 35. The figure shows an apparent

drift of ‘‘h=4e2’’ value during the period. This is to

be interpreted as a drift, which is about �0:06 m�
a year, in the magnitude of the as maintained unit

�ETL (one standard Ohm in the SI system main-

tained in the Electrotechnical Laboratory).

5.2. High precision measurements of quan-

tized Hall resistance by CSIRO-GU-ETL. On

Fig. 33. In a long Hall bar (a) supplied with a voltage VSD
between the source electrode S and drain electrode D,

electronic energy levels change under the quantized Hall effect

condition as shown in (b).62)

Fig. 34. Hall resiatance and transverse resistance of the Si-

MOSFET 72-17H53-17-L1(	max(1.3K) h 1:4� 104 cm2/V
s)
in the gate voltages around the i ¼ 8 and i ¼ 12 plateaus.

T ’ 0:5K, B ¼ 10:5T and ISD ¼ 9:9mA.74)

Fig. 35. The ‘‘h=4e2’’ values reffered to 1�ETL. Closed dots:

ðN=4Þ 
RHðNÞ values; open circles: average values ðN=4Þ

�RRHðNÞ each taken over the group of measurements it belongs

to; vertical bars with the closed dots: typical �1�n�1 for each

set of measurements; vertical bars with the open circles:

�1�M�1=
ffiffiffiffiffi
M

p
for each group of measurements. Here, n is the

number of RHðNÞ data and M ¼ �n for the group.62)
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the basis of extensive investigation of the quantum

Hall effect by GU60)–62) and ETL-GU,73)–76) we

constructed a new measurement system of the

QHE in GU including a 15.6 T superconducting

magnet, a voltage comparator system using a

Guildline 9930 DCC potentiometer, and a cryogenic

current comparator (CCC) resistance bridge,77)

supported by a Grant-in-Aid for Specially Promot-

ed Research, Ministry of Education, Science and

Culture (1985–1988). We used the new measure-

ment system for determination of the value of the

RH(4) for Si-MOSFETs in terms of the realization

of the SI ohm at the National Measurement

Laboratory (NML) of the Commonwealth Scientific

and Industrial Research Organization (CSIRO) in

Australia.78),79) Experimental equipment and proce-

dure are given in detail by Kawaji et al.80)

Three 1-� standard resistors and the 83

elements build-up resistor (BUR) were hand carried

by Brian W. Ricketts from CSIRO to GU on March

7, 1988 and returned on April 6, 1988. Determi-

nation of the values of reference resistors RR(4)

whose nominal values are 6453.2� were made

in two ways: (1) via the 83 element BUR from

March 17–April 2, 1988, and (2) via the CCC

resistance bridge using a step-up sequence of 1–

10�, 10–100� and 100–6453.2�(RR(4)). We made

measurements of the quantized Hall resistance

RH(4) for Si-MOSFETs on March 29, May 10 and

May 14, 1988, by comparing RH(4) to a reference

resistor RR(4). The final result could be expressed

as RH(4) = 6453.20 336(52))�SI-NML or RH(4) =

6453.2(1.000 000 52(8))�SI-NML. The result80) was

reported to B.N. Taylor (NIST) and T.J. Witt

(BIPM) in the Working Group on the Quantum

Hall Effect.

5.3. New international electrical reference

standard RK-90 based on the quantum Hall

effect. Taylor and Witt81) presented the back-

ground and basis for the new international electrical

reference standards of voltage and resistance that

were to come into worldwide use starting on the 1

January 1990. They described that founded on the

Josephson and quantum Hall effects, respectively.

These new reference standards for voltage and

resistance have improved significantly the interna-

tional uniformity of electrical measurements and

their consistency with the SI. Taylor and Witt were

serving as coordinators of the Working Group on

the Josephson Effect and the Working Group on the

Quantum Hall Effect in the Comité Consultatif

d’Électricité (CCE). Figure 36 was included in the

report of Taylor and Witt to CCE in October 1988.

Our measurement result of RK ¼ i� RHðiÞ value is

shown as CSIRO/GU in the Fig. 36. The term

CSIRO/GU means that the quantized Hall resist-

ance was measured in GU based on the SI ohm by

CSIRO calculable capacitor. The value of von

Klitzing constant, now called as RK-90, recommend-

ed by Taylor and Witt based mainly on the RK

values measured by NIST (USA), NPL (UK) and

CSIRO (Australia) and assigned uncertainty � are

given by

RK-90 ¼ ð25 812:807� 0:005Þ�: ½34�

The relative standard deviation uncertainty is

2� 10�7.

5.4. Reconstruction of the high precision

measurement system in GU and results in

GaAs/AlGaAs heterostructures by CSIRO/

GU. An important result shown in Fig. 36 is a

significant difference between the RK values meas-

ured by CSIRO and CSIRO/GU. The RK value

by CSIRO/BIPM is in good agreement with the

CSIRO value. The result shows that the measure-

ment system or the Hall device in GU has unknown

defects. Nagashima et al. (GU-ETL)82) made meas-

urements of RH(4) and RH(2) of a GaAs/AlGaAs

heterostructure Hall device against the reference

resistors RR(4) and RR(2) whose values are close

to h=4e2 and h=2e2.

Fig. 36. Comparison of the recommended value of RK (the

middle vertical line) and its assigned standard deviation

uncertainty (deliminated by the shading) with the values of

RK and their standard deviation uncertainties as reported

from the researchers in the laboratories.81)
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The values of RR(4) and RR(2) were compared

with a 100� standard resistor via a CCC resistance

bridge. Results showed that ð4� RHð4Þ � 2�
RHð2ÞÞ=2�RHð2Þ ¼ ð0:037� 0:019Þ � 10�6. The re-

sult shows an unknown defect in the measurement

system.

We started to reconstruct the high precision

measurement system in the spring of 1990.83)

Greig W. Small and Brian W. Ricketts from CSIRO

helped us.

Our high precision measurement system con-

sists of two systems. One is a voltage comparator

(VC) system using a Guildline 9930 potentiometer

and the other is a cryogenic current comparator

(CCC) bridge system. The manually operated VC

system was reconstructed into an automatically

operated VC system by Nagata.83) Electronic

circuits in the CCC system were also reconstructed.

In December 1990, Greig Small visited GU from

CSIRO, and advised us on the reconstruction of

the measurement system. We started new measue-

ments of QHR in January 1992 on a GaAs/AlGaAs

heterostructure Hall device. W. Schwitz (OFM)

provided a GaAs/AlGaAs device EPF234/7 for GU.

Figure 37 shows results of comparisons of the

QHR RH(2) in the i ¼ 2 Hall plateau against a 100�

standard resistor called YEW by a cryogenic

current comparator (CCC) bridge carried out by

Nagata83) in December 1992 in GU.

In Fig. 38, five RK values below the dotted

horizontal line are measured in GU based on the

SI ohm by CSIRO between March 1992 and

September 1994.84) They are in good agreement

with the RK value reported by CSIRO in 1988

shown in Fig. 36.

6. Fractional quantum Hall effect:

activation energies in 1/3 and 2/3 FQHE

Since the first observation by Tsui, Stormer

and Gossard85) and Tsui et al.86) in 2DES of GaAs/

Al0:3Ga0:7As heterostructures, the fractional quan-

tum Hall effect (FQHE) has attracted much interest

both experimentally and theoretically. The phe-

nomenon is characterized by formation of the

plateaus in the Hall resistivity �xy and concurrent

vanishing of the diagonal resistivity �xx similar

to integer quantum Hall effect except that the

filling factor becomes a fractional number � ¼ p=q;

p ¼ 1; 2; 3 . . . and q ¼ 3; 5; 7 . . .. The filling factor �

is defined by � ¼ Nsh=eB, where Ns is electron

number density and eB=h is the degeneracy of a

Landau level. In particular, the 1/3 and 2/3 effects

appear more prominently than other fractional

effects. Theoretical studies87)–93) have shown that

the phenomenon is associated with the formation

of a new liquid-like condensed electronic state

arising from the strong electron-electron Coulomb

interaction.

Chang et al.94) measured temperature depend-

ence of �xx near the 2/3 FQHE in very high mobility

samples. They can vary electron density continu-

ously between 1 and 2:1� 1011 cm�2 using a back-

side gate. The highest mobility achieved is 1:5� 106

cm2/V
s. The temperature dependence show a

Fig. 37. Results of comparisons of the QHR RH(2) in the i ¼ 2

Hall plateau against a 100� standard resistor called YEW by

a cryogenic current comparator (CCC) bridge carried out by

Nagata in December 1992 in GU. The current in the GaAs/

AlGaAs Hall device was 35 mA.83) Fig. 38. Five RK values below the dotted horizontal line are

measured in GU based on the SI ohm by CSIRO between

March 1992 and September 1994.84) The measurements of

March ’92 and Dec. ’92 were carried out by Nagata and

measurements of Feb. ’93, April ’94 and Sep. ’94 were carried

out by Hayashi. They are in good agreement with the RK value

reported by CSIRO in 1988 in Fig. 36. The part above the

horizontal dotted line are results included in Fig. 36.
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single straight line for each � (0:6 	 � 	 0:665) in

log�xx vs 1=T plots between 0.4K and 0.065K. The

activation energy at � ¼ 2=3 is �ð2=3Þ ¼ 0:830K.

Kawaji, Wakabayashi, Yoshino and Sakaki

measured activation energies of �xx around � ¼
1=3 and 2/3 in very high mobility samples by

varying magnetic fields up to 15.5 T at temper-

atures down to 0.1K.95) The samples used are

modulation doped GaAs/AlxGa1�xAs(x ’ 0:3) het-

erostructures grown by molecular beam epitaxy.

The layer structure consists of 1.2 mm undoped

GaAs, 500A of undoped AlGaAs, 1500A Si-doped

(2� 1017 cm�3) AlGaAs, and 100A of undoped

GaAs. Surface electron density and electron mobi-

lity at 1K are Ns ¼ 1:2� 1011 cm�2 and 	 ¼ 1:1�
106 cm2/V
s, respectively. The total length of the

samples, the potential probe distance and the width

are 600 mm, 200 mm and 50 mm, respectively.

Behavior of the magnetic field dependence of

�xy and �xx is shown in Fig. 39. In addition to the

1/3 and 2/3 FQHE, clear minima are observed at

� ¼ 2=5 and 3/5 in �xx at 0.21K and at � ¼ 4=5 in

�xx at 1.0K. Clear shoulders are also observed at

� ¼ 5=7 in both �xx and �xy at 0.21K. Two samples

showed nearly the same behavior.

Figure 40 shows temperature dependence of

�xx at � ’ 1=3 and � ’ 2=3 at fixed magnetic fields

of 7.4 T and 14.6 T. Each line of log�xx vs 1=T plots

at � ’ 1=3 and � ’ 2=3 in Fig. 40 consists of two

straight lines. The sharp break in the temperature

dependence looks to show that the mechanism of

electron transport changes at these temperetures.

We determined activation energies �1 and �2 by

�xx / expð��=T Þ in the high and the low temper-

ature regions, respectively. Two samples have

similar temperature dependence characterized by

�1 and �2.

We describe the creation energy of the quasi

particles as

�q:p ¼
Cq:pe

2

�‘B
½35�

where Cq:p is a numerical constant, � dielectric

constant, and ‘B ¼
ffiffiffiffiffiffiffiffiffiffiffi
h�=eB

p
magnetic length. After

Laughlin,88),90) Cq:e ¼ 0:030, Cq:h ¼ 0:026. Chacra-

borty derived Cq:e ¼ 0:025.91) Haldane and Rezayi92)

derived for a pair creation Cq:e þ Cq:h ¼ 0:105.
When we follow Laughlin,88),90) We have

�q:e: ¼ 5:8K and �q:h: ¼ 5:0K at B ¼ 14:6T. As

Yoshioka93) discussed, these values suffer reduction

of about 50% by the three dimensionality and about

10% by the mixing of higher Landau levels. The

experimental result �1ð1=3Þ ¼ 2:7K is in good

agreement with the theoretical results.

In the case of � ¼ 2=3, electron-hole symmetry

requires that the ratio of �ð1=3Þ and �ð2=3Þ for

the same sample is
ffiffiffi
2

p
as activation energy is

scaled by e2=�‘B. However experimental results

show that �ð1=3Þ=�ð2=3Þ ’ 3. This discrepancy

cannot be understood.

Further experimental studies for activation

energies of the 1/3 and 2/3 FQHE have been made

by Wakabayashi, Kawaji, Yoshino and Sakaki,96),97)

and by Wakabayashi, Sudou, Kawaji, Hirakawa

Fig. 39. Magnetic field dependence of the diagonal resistivity

�xx at T ¼ 0:21 and 1.0K and the Hall resistivity �xy at 0.21K

in a GaAs/AlxGa1�xAs heterostructure with very high elec-

tron mobility. In addition to the 1/3 and 2/3 effect, 2/5, 3/5,

4/5 and 5/7 effect are also observed. The upper scale of

filling factor is for the help of sight.95)

Fig. 40. Temperature dependence of �xx minima at � ’ 1=3
(B ¼ 14:6T) and � ’ 2=3 (B ¼ 7:4T) where � is the filling

factor of a Landau level.95)
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and Sakaki98)–101) for various samples.

Figure 41 shows typical traces of �xx and �xy
against the magnetic field B for each class of

samples. The magnetic field is normalized at

� ¼ 2=3. In addition to the 1/3 and 2/3 effects,

clear minima of �xx and clear shoulders in �xy are

observed at � ¼ 2=5 and 3/5 and also minima of �xx
at � ¼ 4=3 and 5/3 are observed in the sample

R-110-B5. The Hall resistivity �xy larger than h=e
2

for � 
 1 of this sample is probably due to a contact

effect.

Figure 42 shows an example of experimental

results of temperature dependence of the resistivity

in � ¼ 1=3 FQHE in a GaAs/Al0:3Ga0:7As hetero-

structure called sample A measured at temper-

atures between 1.2K and 70mK. The electron

concentration Ns and the electron mobility 	 were

controlled between 4:3� 1014 and 9:7� 1014 m�2,

and 14 and 62m2/V
s, respectively, by applying a

bias voltage between �50 and 167V on the backside

gate.101) Each solid line represents a fitted curve for

the equation

�xxðT Þ ¼ �01e
�W1=T þ �02e

�W2=T ½36�

where W1 represents the activation energy meas-

ured in kelvin in the high temperature region and

W2 in the low temperature region, respectively.

They studied the 2/3 effect by use of sample B

whose electron concentration and electron mobility

were controlled between 1:5� 1015 and 2:5� 1015

m�2, and 27 and 88m2/V
s, respectively.98)
Magnetic field dependence of the activation

energy W1 for � ¼ 1=3 FQHE in the sample A and

� ¼ 2=3 FQHE in the sample B are shown in

Fig. 44. This figure contains all W1 data so far

measured by Wakabayashi et al.96)–98),101) connected

by broken lines. (Closed symbols are data for � ¼

(a) (b)

Fig. 41. (a) Magnetic field dependences of the diagonal resis-

tivity �xx in four GaAs/AlxGa1�xAs heterostructures. The

current used is 10 nA (2� 10�6 A/m). The magnetic field

is normalized at the filling factor � ¼ 2=3. (b) Magnetic

field dependendes of the Hall resistivity corresponding to (a).

The �xy larger than h=e2 for � 
 1 of the sample R-110-B5 is

probably due to a contact effect.96)

Fig. 42. Temperature dependence of the diagonal resistivity

minima at � ’ 1=3 for each gate bias between �50(top) and

þ167V(bottom) in sample A. The current used is 5 nA except

for 5.2 T (2 nA) and 7.3 T (10 nA). Each solid line represents a

fitted curve for Eq. [36].101)

Fig. 43. Temperature dependence of the diagonal resistivity

minima at � ’ 2=3 for each gate bias between �58V(top) and

þ68V(bottom) in sample B. The current used is 0.2 nA for

the field between 9.2 T and 11.9 T, and 2.0 nA between 12.9 T

and 15.2 T. Each solid line represents a fitted curve for

Eq. [36].98)
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1=3 and open symbols for � ¼ 2=3.) Results by

Chang et al.94) and Boebinger et al.102) are also

shown by a dotted line.

Activation energy in the 1/3 and the 2/3

FQHE is expected theoretically to be expressed by

W1 ¼ �e2=�‘B which is proportional to B1=2. In

Fig. 44, W1ð1=3Þ data make a group but they are

not proportional to B1=2.W1ð2=3Þ data are scattered

and look to be separated into two groups. One

group of W1ð2=3Þ data at B 	 7:5T is close to the

W1ð1=3Þ data but another group of W1ð2=3Þ data

at B 
 10T is much lower than the W1ð1=3Þ data.

Further experimental studies are needed to solve

the problem.

7. Breakdown of quantum Hall effect

and collapse of quantized Hall resistance

at high currents

7.1. Breakdown of quantum Hall effect at

high currents. The quantum Hall effect (QHE)

appears in a Hall bar as the Hall resistance is

quantized as RHðiÞ ¼ h=ie2 (i: an integer) with zero

diagonal resistance Rxx ¼ 0. Breakdown of the QHE

appears as an abrupt appearance of Rxx in a Hall

bar at a high current.103),104)

In the QHE, a non-dissipative state appears

near the central part of a Hall bar. Joule heat is

always generated at both ends of the Hall bar, i.e.

in transition regions between the 2DES and two

current electrodes.62) The breakdown of the QHE

which the GU group aimed to measure is appear-

ance of dissipation in a part of a Hall bar other than

the parts near the current electrodes. In a series of

experiments we used specially designed Hall bars

which we call butterfly-type Hall bars fabricated

from GaAs/Al0:3Ga0:7As heterostructure wafers by

photolithography and wet chemical etching. Elec-

trode structures, called the butterfly-type I, have

the same source and drain electrode width of W ¼
400 mm and a large length between the source and

the drain electrodes of L ¼ 2900 mm. The length of

the central part ‘ is 600 mm long and has a different

width w between 10 and 120 mm. The length ‘ ¼
600 mm is found in three pairs of potential probes.

The width of each Hall bar is linearly narrowed

from both current electrodes to the ends of the

central part as shown in Fig. 45 (See also Fig. 1

in the reference 105). Another type of Hall bars

(butterfly Type II) have W ¼ 400 mm, L ¼ 2600

mm.106) We fabricated the central part of the Hall

bar with ‘ ¼ 120 mmþ 12w where ‘ and w are length

and width, respectively, of the central part. The

width of the central part is fabricated as w ¼ 3, 4, 5,
10, 20, 50 and 60 mm. The length ‘ is distributed

in three pairs of potential probes similar to the

Type I.

We compared breakdown features between the

butterfly Type I Hall bars and conventional rec-

tangular Hall bars (L ¼ 600 mm) fabricated from

the same heterostructure wafer which has Ns ¼

Fig. 44. Magnetic field dependence of the activation energy

W1. Closed symbols are data for � ¼ 1=3 and open symbols for

� ¼ 2=3. The dotted line shows results from references 94 and

102. The broken lines connect the data taken from samples

with no backside gate.96),101) Properties of samples as shown

by the symbol of the sample follows (Ns in 1014 m�2 and 	 in

m2/V
s). and (12 and 110), (9.4 and 21), (6.8 and 28)

and (5.6 and 23), (190 and 32), (68 and 28).96) Sample A

(4:3�9:7 and 14�62).101) Sample B (15�25 and 27�88).98)

Fig. 45. Critical current of the breakdown Icr versus sample

width w in butterfly Type I Hall bars (open symbols) and

rectangular Hall bars (full symbols). A butterfly-type Hall

bar is schematically shown in the upper left and a rectangular

Hall bar is schematically shown in the lower right.107)
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1:6� 1015 m�2 and 	 ¼ 35m2 V�1 s�1. An example

of the width dependence of the critical breakdown

current is shown in Fig. 45.107) The conventional

rectangular Hall bars show a sublinear dependence

of Icr on w, while the butterfly Type I Hall bars

show a linear dependence. We have extended

breakdown measurements for butterfly Type I and

butterfly Type II Hall bars fabricated from various

wafers. Experimental results for critical breakdown

electric field Fcr at the center of each Hall plateau

with the plateau quantum numbers i ¼ 1; 2; 3; 4

are plotted against the magnetic field at the center

of each plateau in Fig. 46.107) Figure 46 shows

that Fcr ði ¼ 2; 4Þ lie on a single straight line and

Fcr ði ¼ 1; 3Þ lie on another parallel single straight

line in the log-log plot and their slopes are 3/2.

The magnetic field dependence of the break-

down critical electric field, Fcr / B3=2, is an impor-

tant fact to find a mechanism for the breakdown.

Another important result in Fig. 46 is that the

critical breakdown Hall electric field is independent

of the electron mobility. Eaves and Sheard108) have

derived a simple expression for the critical break-

down electric field FcrðE� SÞ / B3=2 based on the

inter-Landau level tunneling of electrons as the

Landau level splitting is proportional to B and the

spacial extent of its wave function is inversely

proportional to
ffiffiffiffi
B

p
. However, the magnitude of

FcrðE� SÞ is more than one order of magnitude

larger than our experimental results. According to

Eaves and Sheard, FcrðE� SÞi¼2=FcrðE� SÞi¼4 ¼
1:5, while they are the same in our experimental

results. Probably a higher order tunneling process

should be taken into account to understand exper-

imental results.

7.2. Collapse of quantized Hall resistance

at high currents. We refer to the abrupt

appearance of deviation of Hall resistance �RHðiÞ
from the quantized value as collapse of the quan-

tized Hall resistance. The phenomena which occur

in the QHE at high current have been known since

the early 1980s. Most of the research has been

carried out, however, on the breakdown of the

QHE. Almost no experimental research has been

carried out on collapse of the QHR in high precision

except Cage et al.104) Since 1998, we have run

experiments on collapse of the QHR using ‘‘butter-

fly-type’’ Hall bars.

In our first experiment on the collapse of the

QHR,109) we fabricated a giant butterfly-type Hall

bar (GBH) as shown in Fig. 47(b), as a reference

Hall bar from a heterostructure wafer whose

electron concentration and mobility at 1K are Ns ¼
2:6� 1015 m�2 and 	 ¼ 100m2/V
s. The GBH has

wide current electrodes (W ¼ 7mm), with a large

distance between them (L ¼ 6mm) and a wide

central rectangular measurement part with

w ¼ 1mm and l ¼ 2mm. We also fabricated two

standard butterfly-type Hall bars (SBH) with

narrow width of the central part w ¼ 35 mm (SBH-

LC5) and w ¼ 15 mm (SBH-LC7) from a hetero-

structure wafer whose electron concentration and

mobility at 1K are Ns ¼ 5:3� 1015 m�2 and 	 ¼
20m2/V
s.

Fig. 46. Critical breakdown Hall electric field Fcr versus

magnetic field B in butterfly-type Hall bars.107) Low mobility:

13:5 	 	ðm2 V�1 s�1Þ 	 27.

Fig. 47. Hall bars used in the first experiment of the collapse of

the QHR. (a) Standard butterfly-type Hall bars. The width

w ¼ 15mm in the sample LC7 and w ¼ 35 mm in the sample

LC5. (b) Giant butterfly-type Hall bar.109)
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Quantized Hall resistance RH(4) in the SBH

samples and RHð2Þ=2 in the GBH sample were

compared directly, using a cryogenic current com-

parator (CCC) bridge77),82) by comparing ISD of

each sample for the equal Hall voltages of two

samples as ðVH1 � VH2ÞSBH ¼ ðVH1 � VH2ÞGBH. At low

currents, agreement between RHð4Þ in the SBH

samples and RHð2Þ=2 in the GBH sample is within

0.02 ppm. We confirmed that the critical current of

breakdown Icr in the GBH sample is about 30 times

that of Icr in the SBH-LC5 (w ¼ 35 mm) and about

60 times that of Icr in the SBH-LC7 (w ¼ 15 mm).

Measurements were carried out at T ¼ 0:75K
immersing a SBH sample and the GBH sample into

liquid 3He in a magnetic field up to 9 T.

Experimental results are shown in Fig. 48.

Each sample shows a sharp decrease in the Hall

resistance RH against ISD, i.e. collapse of the QHR,

at ISD � 19 mA in the SBH-LC7 and at ISD � 45 mA
in the SBH-LC5 sample, respectively. When we

plotted �RH=RHð4Þ against the Hall electric field

FH, we found that the collapse of the QHR in these

two samples occurs at the same Hall electric field.

The finding that a sharp decrease in RH at that

value of ISD at which only a gradual change appears

in �xx is not in agreement with that reported by

Cage et al.104) They reported that the value of RH

decreases only by (0:1 � 0:6) ppm while Rxx shows

changes by 6 orders of magnitude during a change of

ISD from 25 mA to 370 mA in a rectangular Hall bar

which is 4.6mm long and 0.38mm wide.

Kawaji, Iizuka, Kuga and Okamoto110) con-

firmed that results of the collapse of the QHR

observed using three different pairs of Hall probes

shown in Fig. 47(a) are the same, and behaviour of

Rxx against ISD measured using different pairs

of voltage probes along the opposite sides of the

Hall bar are also the same.

In order to explain the collapse of QHR and

behavior of Rxx against Hall electric field FH,

Kawaji et al. proposed a phenomenological model

for the electronic structure of a Hall bar in the

quantum Hall state.110)

We have used a butterfly-type Hall bar in order

to escape from effect of electron heating by high

electric fields at opposite corners of source- and

drain-electrode on a central measurement part of

the Hall bar. Jeanneret et al.111) have used Hall bars

which have an electrode structure similar to our

butterfly-type Hall bars in their experiment to

confirm that RHðiÞ is independent of device width

within the uncertainty �1� 10�9. As shown in

Fig. 49, the following are differences of the electrode

structures between the butterfly-type Hall bar and

the Jeanneret-type Hall bar: (1) the width w of the

channel for measurement, (2) the ratio of the probe

width wp to channel width w, and (3) the distance

dp between adjacent voltage probes along the same

side of the measurement channel.

Kawashima, Tanaka and Kawaji112) used a

Jeanneret-type Hall bar with w ¼ 100 mm, dp ¼
520 mm and wp ¼ 50 mm. Measurements of Hall

resistance were made using a cryogenic current

comparator (CCC) bridge. In the comparison

measurements, 6.45 and 12.9 k� metal wire resistor

were used for RH(4) measurements. Measurement of

RH and �xx was made at 1.8K. Behavior of collapse

of the QHR and change in �xx with the increase in

ISD were measured near the center of the i ¼ 4

Fig. 48. Deviation of Hall resistance �RH=RH from the quan-

tized value RHð4Þ ¼ h=4e2 and change in diagonal resistivity

�xx in standard butterfly-type Hall bars SBH-LC5 (w ¼ 35mm)

and SBH-LC7 (w ¼ 15mm) against source-drain current

ISD.
109)

Fig. 49. Electrode structures of Hall bars. (a) Butterfly-type

Hall bar with the channel width w ¼ 15 or 35 mm and the

voltage probe width wp ¼ 40mm. (b) Jeanneret-type Hall bar

with the channel width w ¼ 100 mm and the voltage probe

width wp ¼ 50 mm.112)
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plateau. As an example, results at � ¼ 4:00 are

shown in Fig. 50. In these experiments, collapse of

the QHR and breakdown of non-dissipative state

appear at almost the same source-drain current ISD.

Significant differences are observed between

Jeanneret-type Hall bars and butterfly-type Hall

bars. First, in the Jeanneret-type Hall bar, �xx
increases rapidly with the increase in ISD in a region

ISD > 70 mA as shown in Fig. 50. Second, collapse of

the QHR appears at nearly the same current for the

breakdown of the non-dissipative state in Jeanneret-

type Hall bars wheras breakdown of non-dissipative

state appears at about 1.2 times ISD for collapse of

the QHR in butterfly-type Hall bars. These results

show that the electronic structure in the Jaenneret-

type Hall bar is not inhomogeneous like butterfly-

type Hall bars discussed by Kawaji, Iizuka, Kuga

and Okamoto.110)

It has been known that the conduction due

to electrons in the extended states thermally

excited from localized states shows the temperature

dependence of the resistivity given as

�xxðT Þ ¼ �1 expðEA=kBTÞ: ½37�

Here, the variable range hopping is ignored as the

temperature is not low enough. The activation

energy depends on the Hall electric field FH as

EA ¼ EA0 � ae‘BFH ½38�

where EA0 ¼ h�!c=2 and ‘B ¼
ffiffi
ð

p
h�=eBÞ.113)–115) Nu-

merical factor a depends on samples such as a ¼ 25

in the i ¼ 4 plateau,113) a ¼ 9 in the i ¼ 2 plateau114)

and a ¼ 38� 8 in the i ¼ 4 plateau.115) Figure 51

shows Shimada et al.’s experimental results115)

where the activation energy EA is normalized by

h�!c=2 and the Hall electric field FH is normalized

by (h�!c=2elB).

ISD dependence of �xx in Fig. 50 can be

explained for ISD < 70 mA by Eq. [37] and [38] by

using a ¼ 16:5. Another effect of high Hall electric

field may appear in electron heating.112)

Exact quantization of RHðiÞ is expected in case

of no dissipation, i.e., �xx ¼ 0. Finite dissipation

is expected to produce deviation of RH from the

quantized value RHðiÞ, �RH ¼ RH � RHðiÞ, which is

expected to be given by

j�RH=RHðiÞj � ð�xx=�xyÞ2 ½39�

from conductivity tensors and resistivity ten-

sors.116) However, an experimental relation was

derived as

�RH=RHðiÞ ¼ �s�xx=RHðiÞ ½40�

where s is given as s 	 0:15,76) s ¼ 0:048117) for Si-

MOSFETs and s ranges from 0.507 to 0.015 in

GaAs/AlGaAs heterostructures.118) However, the

experimentally derived relation given by Eq. [40]

has not been explained by basic electronic proc-

esses. In order to confirm the validity of the relation

RK ¼ h=e2, we have to use a Hall device that shows

the relation given by Eq. [39].

Figure 52 shows comparison of experimental

Fig. 50. Collapse of the QHR and breakdown of �xx at the

center of the i ¼ 4 Hall plateau (� ¼ 4) in a Jeanneret-type

Hall bar.112)
Fig. 51. Hall electric field dependence of the activation energy

in the temperature dependence of the diagonal resistivity. The

activation energy EA is normalized by h�!c=2 and the Hall

electric field FH is normalized by ðh�!c=2elB). In sample names

such as HB, 4B and HS, ‘‘H’’ and ‘‘4’’ mean wafer’s code. B and

S means butterfly-type Hall bar and a short channel Hall bar,

respectively. The short channel is a 7 mm long(l0) and 20 mm
wide(w0) channel which is made in the central part of a

butterfly-type Hall bar.115)
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results of j�RH=RHð4Þj and ð�xx=RHÞ2 plotted in a

logarithmic scale. In Fig. 52, results calculated by

Eq. [39] are about one tenth of experimental results

of �RH=RHð4Þ in a region of ISD higher than the

breakdown current. They pointed out that �xx used

for calculation of ð�xx=RHð4ÞÞ2 is measured not in

the region between opposite Hall probes but in the

channel along ISD. When we take into account

the fact that the Hall electric field FH in the part for

RH measurement is lower than that in the part for

�xx measurement, agreement between j�RH=RHð4Þj
and ð�xx=RHÞ2 would be worse than that shown in

Fig. 52. Further experimental studies using Hall

bars having better electrode structures are needed.

Tanaka, Kawashima, Iizuka, Fukuda and

Kawaji measured temperature dependence of crit-

ical current for the collapse of QHR in the butterfly-

type and the Jeanneret-type Hall bars.119) As it

is known that the Hall electric field causes the

QHR collapse,109) the variations of the critical Hall

electric field for the collapse Fcr ¼ RHð4ÞIcrðT Þ=w
with temperature T derived from the IcrðT Þ in two

samples are shown in Fig. 53. Each curve in this

figure can be taken as the threshold curve that

separates the QHE state on the lower left side of

the figure from the non-QHE state on the upper

right side in a F � T plane.

The variation of FcrðT Þ with temperature as

shown in Fig. 53 is described by

FcrðT Þ ¼ Fcrð0Þð1� ðT=TcrÞ2Þ ½41�

as shown by each solid curve. The critical Hall

electric field at absolute zero Fcrð0Þ and the critical

temperature Tcr shown in Fig. 53 are summarized

in Table 3. Fcrð0Þ in two Hall bars in Table 3 are

proportional to B3=2.

Tanaka et al.119) discussed their experimental

results on the basis of the electron localization

picture of the QHE. They concluded that the

temperature dependence of the critical Hall electric

field for the collapse of QHR measured in two types

of Hall bars can be explained using a model in which

an inter-Landau level electron tunneling gives rise

to the collapse of QHR with temperature depend-

ence arising from the Fermi distribution function.

Further experimental and theoretical studies of

the collapse of QHR are necessary for a deeper

understanding of the QHE.

8. Concluding remarks

(1) A two-dimensional semiconductor was

created on a p-type Si surface by adsorption of

Cs atoms.

(2) Understanding of the weak localization

effect was established in two-dimensional systems

in the temperature dependence of the conductivity

and the negative magnetoresistance in n-channel

inversion layers of Si and GaAs/Al0:7Ga0:3As het-

erostructures.

(3) Understanding of the metal-insulator tran-

Fig. 52. Changes in absolute value of �RH=RHð4Þ, (�xx=

RHð4ÞÞ2 and �xx in logarithmic scales at a magnetic field at

the center of the i ¼ 4 Hall plateau (� ¼ 4).112)

Fig. 53. Temperature dependence of critical Hall electric field

Fcr for collapse of QHR. Each FcrðT Þ cuve in this figure can be

taken as the threshold curve that separates the QHE state

from the non-QHE state in a F � T plane.119)

Table 3. Critical Hall electric field for collapse of QHR at zero

temperature Fcrð0Þ, critical temperature Tcr for Fcr ¼ 0 and

Landau level splitting h�!c in two samples in Fig. 53.119Þ

Sample
B

(T)

Fcrð0Þ
(kV/m)

Tcr
(K)

h�!c

(K)

Butterfly 15 5.7 8.9 7.3 112

Jeanneret 100 4.8 6.9 4.8 95

No. 7] Quantum transport in semiconductor two-dimensional electron systems 225



sition in two-dimensional systems was improved in

Si-MOSFETs.

(4) Understanding of the Anderson localization

in Landau levels in two-dimensional systems

was improved including the electron-hole symme-

try, the quantum Hall effect, the correlation be-

tween �xx and �xy and temperature dependence of

localization. In these studies, our successful results

of measurement of the Hall conductivity made

the most important contribution to understanding

of the phenomena.

(5) High precision measurements of the quan-

tized Hall resistances in collaboration with mem-

bers in NML (CSIRO) and ETL made contribution

to understanding physics of the quantum Hall

effect.

(6) Measurements of activation energies of

the 1/3 and the 2/3 fractional quantum Hall effect

for a lot of GaAs/Al0:7Ga0:3As heterostructure

samples left us some difficulties in understanding

the phenpmenon in comparison with theoretical

studies.

(7) Fundamental property of the breakdown of

the quantum Hall effect was established by intro-

ducing butterfly-type Hall bars into the experimen-

tal study of the phenomenon. Our experience with

the high precision measurements of the quantized

Hall resistances made clear the phenomenon of the

collapse of the quantized Hall resistance. Further

studies of this phenomenon are expected to improve

the understanding of the quantum Hall effect.
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