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Abstract: The formation spectra of model �KKN and �KKNN systems formed by ðK�; nÞ
reactions are investigated in order to obtain a theoretical basis for a proper interpretation of

experimental data concerning kaonic nuclear quasi-bound states. It has been clarified that the

experimentally observable kaonic nuclear state K�pp should be regarded as the decaying state

introduced by Kapur-Peierls, which is different from the pole state solution of the Faddeev

equation.
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1. Introduction

In recent years we have predicted deeply bound

kaonic states, and studied their structure and

formation1)–10) based on the �KKN interaction, which

was derived by a coupled-channel calculation so as

to account for the empirically known low-energy
�KKN quantities. The predicted states have shown

astonishing properties, such as deep binding and

high nuclear densities. Among them the most basic

is the K�pp system, which was predicted to be a

quasi-bound state of 48MeV binding and 60MeV

width2) by a variational calculation using a complex
�KKN interaction. This system has been fully stud-

ied,9),10) revealing that a super-strong nuclear force

is caused by a �KK, which migrates in a dynamically

formed molecular-type dense structure. Lately,

coupled-channel Faddeev calculations have been

done for the same K�pp system,11)–13) but the

binding energy ranges over � 50{80MeV with a

much larger width of � 100MeV. Note that the

widths calculated by all of these different authors

are the partial widths for the pionic decay modes of

! ��p (> 85%) and ! ��p (< 15%), the former of

which is closed when the K�pp binding energy

exceeds about 100MeV. Shevchenko-Gal-Mareš-

Révai13) criticized the use of an energy-independent

complex �KKN interaction by Yamazaki-Akaishi

(Y-A), to which they attributed the origin of the

discrepancy of the predicted widths. In the present

paper we consider this problem, and clarify that the

pole solution of the Faddeev equation does not

correspond to an experimentally observable phys-

ical quantity, whereas the treatment of Y-A effec-

tively takes into account the decaying process

realistically.

The paper is organized as follows. First, we

consider a model �KKN quasi-bound state by chang-

ing the strength of the �KKN interaction, and clarify

the difference between the pole state and the

decaying state in a formation reaction by introduc-

ing the concept of Kapur-Peierls.14) Then, we

proceed to the K�pp system, where we show that

the smaller width in our treatment arises from an

effective consideration of the realistic decaying

process in contrast to the solution of the Faddeev

equation. As experiments dedicated to the issue on

the existence of such kaonic nuclei are planned at

DA�NE, GSI and J-PARC, relevant theoretical

framework should be carefully checked and devel-

oped. In this context we propose the concept of an

‘‘intrinsic decaying state’’ to interpret experimental

data of deeply bound �KK states.

2. Formation of a model �KKN

quasi-bound state

2.1 Solvable model setting. We start from

the assumption that the �ð1405Þ resonance is an
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I ¼ 0 quasi-bound state of �KKN, which is embedded

in continuum of �� as a kind of Feshbach res-

onances.15) In general, quasi-stable bound states of

an exotic hadronic particle, such as the present

kaonic bound states, the deeply bound pionic states,

and the metastable antiprotonic helium states, are

characterized as special kinds of Feshbach res-

onances, where new hadronic particles are born at

high excitation and reveal themselves as bound

states near their emission thresholds.16) They are all

embedded in continuum, but persist to be discrete

states. Among them, the �KKN resonance state is the

simplest system to study its physics deeply.

We consider two channels of �KKN (K�p) and

�� (���þ) for simplicity. We employ a set of

separable potentials with a Yukawa-type form

factor,17)

h~kk0 j vij j~kki ¼ gð~kk0ÞUijgð~kkÞ; gð~kkÞ ¼
�2

�2 þ ~kk2
; ½2:1�

Uij ¼
1

�2

h�2

2
ffiffiffiffiffiffiffiffiffi
�i�j

p
1

�
sij; ½2:2�

where iðjÞ stands for the �KKN channel, 1, or the ��

channel, 2, �ið�jÞ is the reduced mass of the channel

iðjÞ and sij are non-dimensional strength parame-

ters. The binding energy, B �KK ¼ 27MeV, and the

width, � ¼ 40MeV, of �ð1405Þ are reproduced with

the values of

s
ð0Þ
11 ¼ �1:288; s12 ¼ 0:2783; s22 ¼ �0:660; ½2:3�

where U22=U
ð0Þ
11 ¼ 4=3, like in a ‘‘chiral’’ model, and

� ¼ 770MeV=h�c ¼ 3:90 fm�1 are adopted.

Our theoretical interest is how the excitation

spectrum of the quasi-bound state, ��ð �KKNÞ, be-

haves when the bound state comes closer to the

�� lowest decay threshold. In order to investigate

the spectrum shape we increase the attractive

strength of the �KKN channel interaction as

s
ð0Þ
11 ! s11 ¼ f � sð0Þ11 : ½2:4�

The model is depicted in Fig. 1.

The coupled-channel Schrödinger equation is

written with Feshbach’s projection operators, P

and Q (� 1� P ), to the subspaces P and Q, as

PHP P� þ PVQ Q� ¼ E P�; ½2:5�
QHQ Q� þQV P P� ¼ E Q�; ½2:6�

where H ¼ T þ V is the coupled-channel Hamilto-

nian.15) In the P space, Green’s function holds the

following relation:18)

P
1

E �H þ i�
P ¼ P

1

E �Hopt þ i�
P ; ½2:7�

where the ‘‘optical’’ Hamiltonian is defined by

Hopt ¼ PHP þ PVQ
1

E �QHQþ i�
QV P: ½2:8�

The complex potential thus derived corresponds to

the generalized optical potential in a standard

nuclear reaction theory, and thus we refer to it as

optical potential hereafter. It should be emphasized

that this procedure (and the thus-derived complex

potential) in the present case of coupled K�p and

�� channels leads to exact outcomes in P space,

while such a single-channel complex potential is

sometimes misunderstood as being a crude approx-

imation.13) The solution using the above complex

potential is totally equivalent to the solution of a

direct coupled-channel treatment.

In the case of the present model the optical

potential in the �KKN channel as a function of the

complex energy E measured from the K� þ p

threshold is given by

vopt1 ðEÞ ¼ v11 þ v12
1

E � h22 þ i�
v21 ½2:9�

with h22 ¼ tkin2 þ v22 �	Mc2, where 	M ¼ mK� þ
Mp �m�� �M�þ ¼ 103MeV=c2 is the threshold

mass difference. The corresponding optical strength

is analytically derived as shown in Appendix

to be

sopt1 ðEÞ ¼ s11 � s12
�2

ð�� i
2Þ2 þ s22�
2
s21;

h�2

2�2

2
2 ¼ E þ	Mc2;

½2:10�

where 
2 is a complex momentum in the ��

channel. The energy, Epol, of the quasi-bound pole

state is obtained by satisfying Epol ¼ �ðEpolÞ, where

�ðzÞ � �
h�2

2�1
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sopt1 ðzÞ

q
� 1

� �2

; ½2:11�

which is the eigen-value of hopt
1 ðzÞ ¼ tkin1 þ vopt1 ðzÞ on

a proper Riemann’s sheet.

The pole of the present dynamical system

moves with increasing f as shown in Fig. 2. The

pole state, as it becomes deeper, deviates from the

experimentally expected behavior. Namely, the

width becomes broader and broader toward the

�� decay threshold, and this tendency persists even
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beyond this kinematical limit. At the threshold the

pole state goes to a virtual state, not to a bound

state of ��. Thus, the pole state has an unreason-

able behavior, when it is broad and close to the

threshold. This situation arises from ignorance

about the on-shellness of the decaying particles.

Then, how can we describe experimentally observ-

able states? In the next subsection we will introduce

‘‘intrinsic decaying state’’, imposing the on-shell

condition to the outgoing particles. Its behavior is

also shown in Fig. 2. The state becomes narrower

and narrower toward the �� threshold, exhibits

a sharp cusp at around f ¼ 1:2 just before the

threshold, and turns into a stable bound state by

changing Riemann’s sheet from ½þ;�� to a ½þ;þ�
physical one at the �� threshold, where the first

and second signs are those of Im
 for �KKN and ��,

respectively.

2.2 Spectra of the pole state and the decay-

ing state. We now consider how to form such a

model quasi-bound state by a representative reac-

tion

K� þ d ! ��ð �KKNÞ þ n ! �� þ�þ þ n: ½2:12�

The missing-mass spectrum from this reaction is

calculated by using Green’s function,18) as follows:

d3�

d~kkn
¼ ð2�Þ4

Ein
K

h�2c2kinK
jh~kkn j �dij2 �

1

�

� �
Im

�Z
d~rr 0
Z

d~rr

� h~kk in
rel j ty j~rr 0ih~rr 0 j

1

E � hopt
1 ðEÞ þ i�

j~rrih~rr j t j ~kk in
reli
�
;

½2:13�

where Ein
K; k

in
K are the incident energy and momen-

tum of K�, �d is a deuteron wave function, and

Im E

Re E

f =1.0
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Fig. 2. Trajectory of the pole on the E plane, (a), and on the 
2 plane, (b), when the strength of the �KKN interaction is increased as

s
ð0Þ
11 ! f � sð0Þ11 with f ¼ 1:0{1:8. The pole state close to the �� threshold deviates from the experimentally expected behavior, in

contrast to the intrinsic decaying state defined by Eq. [2:17]. The symbol þ (�) denotes the sign of Im
1 or Im
2 in Riemann’s

physical (unphysical) sheet.

π +  + Σ

E

K + N
_

Ξ(E)
Outgoing

f s11
(0)

P space Q space

E =0

-∆Mc 2

Fig. 1. Schematic picture of the present model, which has a

quasi-bound state of �KKN with complex energy �ðEÞ, decaying
to �� with energy E, which is generally complex. The pole

state of the coupled system satisfies �ðEÞ ¼ E.
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hj t ji is a transition matrix between K� and p in d

from the initial state with a relative momentum ~kk in
rel

to final states in quasi-bound region which we are

interested in. The quantity E is the missing mass

multiplied by c2 of the �KKN system, which is a real-

value variable depending on the kinematical con-

dition of the experiment. As stressed before, the use

of the optical potential, Eq. [2:10], in the calcula-

tion of Eq. [2:13] gives exactly the same spectrum as

that obtained by solving the original coupled-

channel Schrödinger equation, thanks to the rela-

tion of Eq. [2:7]. This exact spectrum is shown in

Figs. 3, 4 and 5. The spectrum, which depends on

the imaginary part of hopt
1 ðEÞ, vanishes below the

�� threshold, as expected, since the optical poten-

tial of Eq. [2:10] changes from complex to real one

due to the purely imaginary 
2. The procedure of

Eq. [2:13] using hopt
1 is essentially a calculation of

the ‘‘decaying state’’ of the system.

The decaying state was introduced by Kapur-

Peierls14) as an eigen-state formed in the ‘‘internal

region’’ properly limited, from which outgoing on-

shell particles emerge in the asymptotic region of

open channels. The complex energy (position and

width) of the decaying state is given by using

Eq. [2:11] as

Edec ¼ �ðEobsÞ ½2:14�

for a real energy Eobs of each measurement point of

the experiment. A Breit-Wigner type spectrum,

SBWðE;EdecÞ ¼
1

�

� ImEdec

ðE � ReEdecÞ2 þ ðImEdecÞ2
;

½2:15�

can be drawn for each value of Eobs from Eq. [2:13]

as a one-level formula. Figure 3 (thin curves) shows

-150 -100 -50 0E [MeV]
Σπ

threshold

Eobs points

Intrinsic
decaying state

Exact

Several decaying states

(0)
1111s = 1.10s

Pole state

Fig. 3. Spectrum shapes of decaying states in the case of

1:10 s
ð0Þ
11 . The intrinsic decaying state has 52MeV binding, as

denoted by the dot-dashed vertical line, and 50MeV width.

The exact spectrum is obtained by connecting the spectrum

values of the decaying states at respective Eobs points. The

pole state is also shown for a comparison.

-5-150 -100 -50     0
Σπ

threshold

Exact

Intrinsic decaying state

Pole state

E [MeV]

(0)
1111 1.16ss =

Fig. 4. Spectrum shapes of the intrinsic decaying and the pole

states together with an exact one in the case of 1:16 s
ð0Þ
11 . The

intrinsic decaying state provides a better description of the

spectrum than does the pole state.

-5-150 -100 -50 0

Σπ
threshold

Exact (cusp)

Intrinsic decaying state

Phase-space corrected 
pole state

Pole state

E [MeV]

(0)
1111s = 1.206s

Fig. 5. Spectrum shapes of the intrinsic decaying and the pole

states together with the exact one in the case of 1:206 s
ð0Þ
11 . The

intrinsic decaying state provides a far better description of the

spectrum than the pole state and its corrected one do, in the

cusp case.
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such spectra for several values of Eobs. The real part

of Edec generally deviates from Eobs, and each Breit-

Wigner curve has a crossing point at E ¼ Eobs, as

indicated by a dot. The locus of such dots shows a

smooth curve, expressed by

SðEobsÞ ¼ SBWðEobs;EdecÞ; ½2:16�

which is found to be equivalent to the exact

spectrum calculated by replacing hopt
1 ðEÞ by

hopt
1 ðEdecÞ in the Green function of Eq. [2:13]. The

decaying state is not a unique state, but an

ensemble of states; it depends on the variable E,

which changes under energy-momentum conserva-

tion in the measurement. To overcome such com-

plexity, we introduce the ‘‘intrinsic decaying state’’

designed to be a representative eigen-state of a

school of decaying states.

The intrinsic decaying state is defined as an

eigen-state with the complex eigen-energy, Eint
dec ¼

�, that satisfies the equation of

z� Re�ðzÞ ¼ 0; ½2:17�

whereas the energy of the pole state, Epol ¼ �, is a

solution of

z� �ðzÞ ¼ 0: ½2:18�

These equations impose consistency between the

boundary condition (z) and the eigen-value (�). In

the case of Eq. [2:17] the parameter z becomes a real

number and assures the on-shellness of decay

particles incorporated into hopt
1 ðzÞ. Since hopt

1 ðzÞ
itself is complex, the eigen-value �ðzÞ is a complex

number, and thus a complex Eint
dec is obtained

as a consistent solution. The complex eigen-values,

Eint
dec and Epol, of the two different states are seen

for various values of f in Fig. 2. The spectrum of

the intrinsic decaying state is obtained with BW

function as SBWðE;Eint
decÞ, whereas that of the pole

state is given as SBWðE;EpolÞ. Those spectra

including a continuum are obtained by replacing

hopt
1 ðEÞ by hopt

1 ðEint
decÞ and hopt

1 ðEpolÞ, respectively, in
the Green function of Eq. [2:13].

The case of f ¼ 1:16 is shown in Fig. 4. The

pole-state spectrum has a long tail below the lowest

�� decay threshold, which does not satisfy the

kinematical condition, and thus cannot be observed

by any experiment. Now, one should notice that an

experimental observation corresponds not to the

‘‘pole state’’, but to the ‘‘decaying state’’, since the

detectable decay particles, � and �, appear in the

asymptotic region as on-shell objects. The intrinsic

decaying state gives a much better description of

the spectrum than does the pole state in the case

of a broad deeply bound state. The energy and

the width of �KK are ReEpol ¼ �70MeV and �pol ¼
74MeV for the pole state, and ReEint

dec ¼ �75MeV

and � int
dec ¼ 45MeV for the intrinsic decaying state.

The width of the intrinsic decaying state is consid-

erably smaller than that of the pole state.

Figure 5 shows the case with f ¼ 1:206, where

the exact spectrum reveals a sharp cusp. The pole-

state spectrum persists to be broad, while the

intrinsic decaying state again describes the spec-

trum far better than does the pole state; ReEpol ¼
�83MeV and �pol ¼ 97MeV for the pole state,

and ReEint
dec ¼ �101MeV and � int

dec ¼ 18MeV for the

intrinsic decaying state. A modification of such a

broad pole-state spectrum has been proposed to

multiply the imaginary part of the optical potential

by a phase-space weight of the decay channel.19) A

modified spectrum is also compared in Fig. 5 as

‘‘phase-space corrected pole state’’, but it does not

reproduce the cusp structure.

2.3 Properties of the decaying state.

Figure 6 gives a schematic picture for the process

of the reaction Eq. [2:12] and the decaying state. In

the reaction process of the left panel (a) all of the

energies of the incident K�d, the K�p and the ��

channels have real values. In the K�p channel the

real energy is assured by a feeding from the incident

channel, as discussed below. First we consider a

single feeding point case. Then, the K�p wave

function obeys the following equation with a source

term:

�
h�2

2�1

d2

dr2
u1ðrÞ þ ½voptu1�ðrÞ � Eu1ðrÞ

¼ �V feedðr0Þ
ðr� r0Þ;
½2:19�

where E ¼ Tobs �	Mc2 is any real energy kine-

matically allowed. To satisfy the boundary condi-

tions of u1ð0Þ ¼ 0 and u1ð1Þ ¼ 0 the wave function

must have a kink at r ¼ r0, the strength of which is

defined as

aðEÞ ¼
du1

dr

����
r0�0

�
du1

dr

����
r0þ0

" # ,
u1ðr0Þ: ½2:20�

Then, the following relation is obtained:

ju1ðr0Þj2 ¼
���� 2�1

h�2
V feedðr0Þ
aðEÞ

����
2

: ½2:21�
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This means that the weaker is the kink the stronger

is the population of the state, since the excitation

strength by the reaction is proportional to ju1ðr0Þj2.
The experimentally observable spectra shown as

‘‘exact’’ in Figs. 3–5 are distributions of this kind

of ‘‘population strength’’. The above argument is

easily extended to a general case by integrating over

r0, using
R
V feedðr0Þ
ðr� r0Þdr0 ¼ V feedðrÞ.

When the feeding is cut off, a transient state is

formed in the K�p channel with a complex energy

due to the decay to the �� open channel, which is

the decaying state sketched in the right panel (b) of

Fig. 6. Since the total energy of decaying particles,

� and �, has been kinematically determined

through an experimental process, the energy of this

transient state is not dispersive, but is uniquely

given. Then, the imaginary part of the energy

denotes the decay width, � ¼ h�=�life, giving infor-

mation about the lifetime, �life, of the transient

state. As is understood from Fig. 3 the experimen-

tally obtained width (missing-energy spread) is not

the decay width, but the distribution width of the

population strength. Strictly speaking, both widths

coincide only when a common decaying state is

formed for any Tobs in the peak region. In an actual

case, in order to know the lifetime of a quasi-bound/

resonance state one must extract a Breit-Wigner

type spectrum of the intrinsic decaying state

through an analysis of the experimental data.

Figures 3, 4 and 5 demonstrate three examples of

the difference between the decay width (‘‘intrinsic

decaying state’’) and the distribution width

(‘‘exact’’). The wave function of the decaying

state is explicitly obtained to be

u1ðrÞ ¼ N
ffiffiffiffiffi
�1

p �� i
1

�þ i
1
fe��r � ei
1rg;

Edec ¼
h�2

2�1

2
1; ½2:22�

u2ðrÞ ¼ N
ffiffiffiffiffi
�2

p �s21�
2

ð�� ik2Þ2 þ s22�
2

�� ik2

�þ ik2

� fe��r � eik2rg; ½2:23�

where the second one should be regarded as the

boundary condition of the outgoing state with a real

kinetic energy, Tobs ¼ ðh�k2Þ2=ð2�2Þ.
Needless to say that the eigen-state of the

isolated coupled-channel system is the pole state

that is formed all over the �KKN and �� channels.

However, the large difference between the exact

spectrum and the pole state spectrum means that

the pole state is strongly disturbed and rearranged,

when the system is connected to the incident

channel of the production reaction under the on-

shell decay condition to the open channel. Thus, it

is not effective to consider the pole state to be an

entity that corresponds to the experimental peak,

especially in a broad and near-threshold resonance

case. We should specify our question: what struc-

ture is formed in the �KKN channel when a broad

π + π + Σ

n

K- p K- p

Incident

π +  + Σ

(a) (b)

TobsTobs

-∆Mc 2

0

-∆Mc 2

Fig. 6. Schematic picture for the decaying state formed in the reaction K� þ d ! K�pþ n. (a) A stationary state with real energy is

formed over all of the channels related to the reaction process. (b) A transient state with complex energy �ðTobs �	Mc2Þ, which
is the decaying state, is formed in the �KKN channel under the boundary condition of on-shell decay to the �� open channel.
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peak is experimentally observed in the �KKN missing-

mass spectrum? Then, we come to a legitimate

answer that the structure is the ‘‘intrinsic decaying

state’’ as a representative of decaying states.

3. Decaying state and pole state of K�pp

3.1 Energy dependence of the complex �KKN

interaction. Now let us extend our viewpoint and

discussion to the most basic kaonic nucleus, K�pp.
This system was predicted by using an energy-

independent complex �KKN potential,2),10) which was

determined phenomenologically from the �ð1405Þ
state and the �KKN scattering length.1) In order to

understand its theoretical background we investi-

gate the energy dependence of the optical strength

of Eq. [2:10] for the case of the strength Eq. [2:3].

Figure 7 shows an overview of the complex

strength, sopt1 , of the single-channel �KKN interaction

as a function of z ¼ E � i�=2 on Riemann’s ½þ;��
sheet (see Fig. 2). A singularity appears at

z ¼ � h�2

2�2
�2ð ffiffiffiffiffiffiffiffiffiffi�s22

p � 1Þ2 �	Mc2; ½3:1�

giving the gross structure of the energy dependence.

Sometimes the singularity brings a serious energy

dependence in the case of a small � value.

Figure 8 shows the energy dependence of the
�KKN interaction to be used in a calculation of the

intrinsic decaying state of K�pp, which is the

dependence along the � ¼ 0 line in Fig. 7, since �

and � come out as on-shell decay particles with real

energies. The imaginary strength gradually becomes

weaker as E becomes lower and vanishes below

the �� threshold, in accordance with the physical

intuition. On the other hand, the energy dependence

of the �KKN interaction for the pole state is seen along

the � 6¼ 0 path. As an example, the imaginary part

along the � ¼ 100MeV line is demonstrated in

Fig. 8, which continues to grow irrespective of

the �� threshold as E lowers. This is the origin of

the large width of the pole state of K�pp.
The real part of the �KKN interaction, Re sopt1 , for

the intrinsic decaying state of K�pp is plotted in

Fig. 8. Its strength has a downward kink at the ��

threshold which makes the overall energy depend-

ence moderate. It is to be noted that the kink comes

E = -100 MeV

E = -200 MeV

E = 0

- Re s1
opt

- Im s1
opt

Γ =50
MeV

5

E = 0 E = -200 MeV

E = -100 MeV

Γ =50
MeV

4

3

2

1

5

4

3

2

1

Γ =0

Γ =0

Fig. 7. Behavior of sopt1 ðzÞ as a function of z ¼ E � i�=2 on Riemann’s ½þ;�� sheet. The circle denotes the position of �ð1405Þ.
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Fig. 8. Energy dependence of the optical �KKN interaction for

the decaying state along the � ¼ 0 line. The decaying state

changes Riemann’s sheet from ½þ;�� to ½þ;þ� at the ��

threshold, yielding a moderate energy dependence of Re sopt1

and vanishing Im sopt1 below the threshold. The broken curve

shows Re sopt1 on the persistent ½þ;�� sheet. For a comparison,

the imaginary part of the �KKN interaction for the pole state

along the � ¼ 100MeV line of Fig. 7 is also shown.
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from the fact that the intrinsic decaying state

changes the Riemann sheet at the �� threshold

from ½þ;�� to ½þ;þ�, as depicted in Fig. 2. On the

other hand, the corresponding strength for the pole

state, as seen in Fig. 7, increases monotonically

with an upward kink at the threshold (the broken

curve in Fig. 8), which arises from the ignorance of

the change of the Riemann sheet at the threshold.

Thus, the use of an energy-independent complex
�KKN interaction by Y-A 2),10) is not only justified, but

also found to be effectively a good approximation to

obtain the intrinsic decaying state of K�pp.
3.2 Width of the deeply bound K�pp. We

want to know how much the width differs between

the pole state and the intrinsic decaying state of

K�pp, when the states become sufficiently deep.

First we set the pole state of K�pp to have

Shevchenko et al.’s values of the Faddeev solution,

BðK�ppÞ ¼ 75MeV and � ¼ 100MeV, and deter-

mine the strengths, s11, s12 and s22, by reproducing

them. Recently, the structure of K�pp was inves-

tigated in detail,9),10) and it is revealed that the K�

migrates between the two protons and interacts

with one of them almost exclusively by virtue of the

strong I ¼ 0 �KKN interaction. By fully taking into

account this fact, we construct the �KKN optical

interactions from Eq. [2:10] for the pole state and

for the decaying state, while readjusting the real

part of the latter so as to fit the 75MeV binding.

For the convenience of the ATMS three-body

calculation,20) the obtained optical interactions are

simulated with Gaussian local potentials (units in

MeV and fm) as

vopt1 ¼ ð�669� i120Þ exp �
r

0:66

� �2
 !

; ½3:2�

vopt1 ¼ ð�659� i60Þ exp �
r

0:66

� �2
 !

½3:3�

for the pole state and for the intrinsic decaying

state, respectively. It should be noted that the

Gaussian range parameter we use (0.66 fm) corre-

sponds to a Yukawa range parameter of 0:66=2 ¼
0:33 fm, which is not so different from the value

adopted in Ref. 11. The obtained width of K�pp
is 100MeV (the setting value) for the pole state

and 54MeV for the intrinsic decaying state. This

gives a reasonable account for the difference

between Shevchenko et al.’s 100MeV width and

Y-A’s 60MeV width.

4. Conclusions

In Section 2 we treated the two-body K�p
system starting from the coupled channels of K�p
and �� and clarified that the pole-state solution

leads to unphysical behaviors when the pole state

approaches the �� emission threshold. This diffi-

culty can be avoided by taking into account the fact

that the emitted � and � are on-shell particles with

real energies. We have shown that the experimen-

tally observed resonance is not the ‘‘pole state’’,

but the ‘‘decaying state’’ introduced by Kapur and

Peierls,14) and proposed the ‘‘intrinsic decaying

state’’ as a representative of the exact K�p spectral

shape. In Section 3 we discussed the problem of the

K�pp width disagreement stated in Introduction.

Shevchenko et al.’s width13) is that of the pole state

of K�pp and is not directly related to the exper-

imental observation, while Y-A’s one10) is close to

the intrinsic decaying state, which corresponds to

the experimental shape of the missing-mass spec-

trum. It is concluded that the treatment with the

energy-independent complex �KKN interaction is a

suitable means to obtain the intrinsic decaying state

of K�pp. Shevchenko et al.’s statement11) that

‘‘because the coupling of the two-body K�p channel

to the absorptive �Y channels was substituted by

an energy-independent complex �KKN potential,

Y-A’s results for the binding energy and width of

the K�pp system provide at best only a rough

estimate’’, is a superficial view.

Acknowledgments

The authors thank Professors P. Kienle, M.

Kawai, O. Morimatsu and K. Yazaki for stimulat-

ing and valuable discussions. They acknowledge the

receipt of Grant-in-Aid for Scientific Research of

Monbu-Kagakusho of Japan.

References

1) Akaishi, Y. and Yamazaki, T. (2002) Phys. Rev. C
65, 044005.

2) Yamazaki, T. and Akaishi, Y. (2002) Phys. Lett. B
535, 70–76.
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4) Doté, A., Horiuchi, H., Akaishi, Y. and Yamazaki,
T. (2004) Phys. Rev. C 70, 044313.
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Appendix

The coupled-channel equation for the radial

wave functions, u1ðrÞ and u2ðrÞ, of the present

interaction model is written as follows:

� d2

dr2
u1ðrÞ þ ðG11 þG12Þe��r ¼ 
2

1u1ðrÞ; ½4:1�

� d2

dr2
u2ðrÞ þ ðG21 þG22Þe��r ¼ 
2

2u2ðrÞ; ½4:2�

where

Gij ¼ 2sij

ffiffiffiffiffi
�i

�j

r
�3

Z 1

0

dr0e��r0ujðr0Þ: ½4:3�

From Eqs. [4.1] and [4.2] radial solutions with

outgoing wave boundary conditions are obtained

to be

u1ðrÞ ¼
G11 þG12

�2 þ 
2
1

fe��r � ei
1rg; ½4:4�

u2ðrÞ ¼
G21 þG22

�2 þ 
2
2

fe��r � ei
2rg: ½4:5�

The consistency condition of Eq. [4.3] between ui’s

and Gij’s gives an eigen-value equation of

fð�� i
1Þ2 þ s11�
2g

� fð�� i
2Þ2 þ s22�
2g ¼ s12s21�

4;
½4:6�

which determines the pole energy. If an additional

condition of on-shellness is imposed on 
2, the

intrinsic decaying state of Eq. [2:22] is obtained.

The radial wave function, u1ðrÞ, is also ob-

tained from a single-channel equation with an

optical potential, sopt1 :

� d2

dr2
u1ðrÞ þGopt

1 e��r ¼ 
2
1u1ðrÞ; ½4:7�

where

Gopt
1 ¼ 2sopt1 �3

Z 1

0

dr0e��r0u1ðr0Þ: ½4:8�

The solution with an outgoing wave boundary

condition is obtained to be

u1ðrÞ ¼
Gopt

1

�2 þ 
2
1

fe��r � ei
1rg; ½4:9�

The consistency condition of Eq. [4.8] between u1

and Gopt
1 gives an eigen-value equation of

ð�� i
1Þ2 þ sopt1 �2 ¼ 0: ½4:10�

This equation gives the eigen-value of Eq. [2:11],

E ¼ h�2

2�1

2
1 ¼ �

h�2

2�1
�2

ffiffiffiffiffiffiffiffiffiffiffiffi
�sopt1

q
� 1

� �2

: ½4:11�

Since sopt1 is a complex number, the phase of
ffiffiffiffiffiffiffiffiffiffiffiffi
�sopt1

q
is uniquely determined when a proper Riemann’s

sheet is assigned. A pole on the �KKN ½þ� sheet of

positive Im 
1 is the quasi-bound state pole, and

another pole on the �KKN ½�� sheet of negative Im
1

is the resonance or virtual-state pole, roughly

speaking, depending on the sign of ReE. In the

case of Eq. [2:3], for example, the energy is obtained

to be E ¼ �27� i20MeV ( �KKN quasi-bound state)

with sopt1 ¼ �1:393� i0:142 on the �KKN ½þ� observ-
able sheet, whereas it is E ¼ �3946� i0MeV ( �KKN

virtual state) with sopt1 ¼ �1:156� i0 on the �KKN ½��
sheet. Note that the former ‘‘�ð1405Þ’’ pole is the

quasi-bound state pole with respect to 
1 and, at

the same time, is the Feshbach resonance pole with

respect to 
2 as discussed in Fig. 2 and the text. The

latter pole lies very far from the observation axis.

Rewriting Eq. [4.6] as

ð�� i
1Þ2 þ s11�
2 � s12

�4

ð�� i
2Þ2 þ s22�
2
s21 ¼ 0;

½4:12�

272 Y. AKAISHI, K. S. MYINT, and T. YAMAZAKI [Vol. 84,



and comparing it with Eq. [4.10], we obtain the

relation of Eq. [2:10],

sopt1 ¼ s11 � s12
�2

ð�� i
2Þ2 þ s22�
2
s21 ½4:13�

without any approximation. Eq. [4.13] means that

a loop integral of Green’s function in Channel 2

becomesZ Z
d~qq 0d~qqgð~qq 0Þh~qq 0 j

1

E � h22 þ i�
j~qqigð~qqÞ

¼ � �2 2�2

h�2
�

� �
�2

ð�� i
2Þ2 þ s22�
2
:

½4:14�

Similarly, a loop integral of Green’s function in

Channel 1 is evaluated asZ Z
d~qq 0d~qqgð~qq 0Þh~qq 0 j

1

E � hopt
1 ðEÞ þ i�

j~qqigð~qqÞ

¼ � �2 2�1

h�2
�

� �
�2

ð�� i
1Þ2 þ sopt1 �2
:

½4:15�
This formula is used to derive a Breit-Wigner type

spectrum from Eq. [2:13], where the t-matrix is

separable, h~kk j tij j~qqi ¼ gð~kkÞTijgð~qqÞ, in the present

model.
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