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Abstract: Diverse kinds of gem- and vic-diborylated compounds are now readily available

thanks to advances in gem-diborylation of lithium carbenoids as well as vic-diborylation of

carbon–carbon multiple bonds with diboron compounds. These diborylated reagents lead to

invention of polyborylated reagents and many novel and useful synthetic methods for supreme

stereocontrol. This review summarizes preparative methods and synthetic reactions of di- and

polyborylated reagents with the emphasis on multiple bond formation.
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Introduction

Dimetalated organic compounds have recently

emerged as versatile reagents for organic synthesis

because such bifunctional compounds allow us to

synthesize target organic frameworks very efficient-

ly through multiple bond formations in a single

operation or stepwise transformations in one-pot.1)

Furthermore, organodimetallic compounds can

serve as valuable precursors of polyfunctional

organometallic reagents.2) Therefore, it is of great

importance to develop efficient preparations as

well as chemo-, regio-, stereo-, and enantioselective

reactions of dimetalated compounds. Simultaneous

incorporation of two metals into organic substrates

with reagents having metal–metal linkage is a

highly attractive approach as the preparative

method in view of atom economy and straightfor-

ward strategy (Scheme 1). Indeed, transition-metal

catalyzed cleavage of the metal–metal linkage such

as B–B, B–Si, B–Sn, Mg–Si, Mg–Zn, Mg–Sn, Al–Si,

Al–Sn, Si–Si, Si–Sn, Si–Zn, Sn–Sn, and Sn–Zn,

followed by addition to carbon–carbon unsaturated

bonds have been well-described as efficient syn-

thesis of vic-dimetalated compounds.3)

In sharp contrast, gem-dimetalation using

such metal–metal compounds has remained unex-

plored.4) In 1976, Kitatani, Hiyama, and Nozaki

reported stereoselective one-pot dialkylation of

gem-dihalocyclopropanes with diorganocuprate

and alkyl halide. The reaction is considered to

proceed through generation of an ate-type carbe-

noid by bromine-copper exchange at the less

hindered site, consecutive alkyl 1,2-migration from

the negatively charged copper to the carbenoid

carbon with inversion of configuration, and the

second alkylation of the resulting copper reagent

with methyl iodide (Scheme 2).5) This type of

transformation is disclosed now to be applicable to

not only cyclopropylidene- but also alkylidene-type

carbenoid reagents with a variety of metals.6)

Worthy to note is that an SN2 type substitution

reaction with inversion of configuration at the

carbogenic center, which is otherwise inert to

conventional nucleophilic substitution reaction.

Based on the novel concept, the authors

designed gem-dimetalation of lithium carbenoids
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with such metal–metal compounds as B–B and B–Si

(Scheme 3). Thus, they envisioned that gem-diboryl

and gem-silylboryl products should result via a

sequence of reactions of (1) borate formation and

(2) 1,2-migration of a boron or silicon atom from the

negatively charged borate centers to the carbenoid

carbons in a 1,2-fashion with elimination of a

halogen atom.7) Actually the designed sequence

did work well.8) Consequently, repertoire of gem-

silylboryl and gem-diboryl compounds are largely

expanded, and organic synthesis utilizing those

bifunctional reagents has dramatically advanced.

This review focuses on not only gem-diboryl but

also vic-diboryl compounds illustrated in Figure 1

and summarizes the preparations and selective

transformations for organic synthesis.9)

Preparation of gem- and vic-diboryl
compounds

Double hydroboration of 1-alkynes with such

borane reagents as diborane, dicyclohexylborane,

and 9-BBN is a classical way for the preparation of

1,1-diborylalkanes.10) In view of yield and selectiv-

ity of 1,1- versus 1,2-double boration, 9-BBN is the

reagent of choice. For example, 1-hexyne reacts

with two molar amounts of 9-BBN to give 1-hexanol

quantitatively after oxidative workup as illustrated

in Scheme 4.

Insertion of diazoalkanes into bis(pinacolato)-

diboron (1, abbreviated as Bpin-Bpin) is catalyzed by

O

O
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O
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toluene, 110 °C 78%
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a platinum catalyst to produce disubstituted dibo-

rylmethanes eq. [1].11) Tetrakis(dimethoxyboryl)-

methane, prepared from carbon tetrachloride by

treatment with lithium and dimethoxyboryl chlo-

ride (Scheme 5),12) undergoes transesterification

with pinacol or 1,3-propanediol to give the corre-

sponding tetraborylmethanes, respectively.13)

Convenient synthesis of 1,1-diborylated cyclo-

propanes is achieved by gem-diborylation of

cyclopropylidene lithium carbenoids with 1

(Scheme 6).14) Thus, the carbenoids generated by

treatment of dibromocyclopropanes with BuLi in

THF/Et2O at �110 �C react with co-existing 1

to give gem-diborylcyclopropanes in good to high

yields. The method is applicable to the preparation

of not only tri- and tetrasubstituted cyclopropanes

but also fused and hexasubstituted cyclopropanes.
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Generation of triborylmethyllithium from

tetraborylmethanes with methyllithium followed

by condensation with aldehydes or ketones produc-

es 1,1-diboryl-1-alkenes (Scheme 7).15) Such func-

tional groups as chloro, ethoxycarbonyl, and amino

groups tolerate the conditions.

Diborylation of alkylidene-type lithium carbe-

noids with 1 also serves as an efficient preparative

method for 1,1-diboryl-1-alkenes (Scheme 8).16)

Various types of gem-diborylalkenes are easily

prepared starting from the corresponding 1-halo-

or 1,1-dihaloalkenes with the aid of butyllithium

or a base.

The methodology is readily extended to syn-

thesis of 2,3-bis(pinacolatoboryl)-1,3-butadiene (2)

(Scheme 9).17) Thus, when 1 is treated with 1-

bromo-1-lithioethene in excess generated from vinyl

bromide with LiTMP, 2 is produced in high yield.

Formation of 2 is ascribed to the borate formation

between the initial product, 1,1-diborylethene,

and another 1-bromo-1-lithioethene, followed by

1,2-migration of a 1-borylethenyl group. Mean-

while, 1,4-disubstituted 2,3-diboryl-1,3-butadienes

are prepared by regioselective hydrozirconation of

alkynylboronates with HZrCp2Cl followed by dime-

rization with CuBr (Scheme 10).18)

Various vic-diborylated compounds are readily

available through transition metal-catalyzed 1,2-

diboration of carbon–carbon multiple bonds with

diborons.19) Platinum complexes such as Pt(PPh3)4,

Pt(norbornene)/PPh2(o-tolyl), and Pt(PCy3)(�2-

C2H4)2 catalyze cis-addition of diborons to both
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terminal and internal alkynes to give 1,2-dibo-

rylated acyclic alkenes stereoselectively (Scheme

11).20) Terminal and strained cyclic alkenes are

smoothly diborylated in the presence of phosphine-

free Pt catalyst to provide 1,2-diborylalkanes.21) �-

Borylallyllic boranes are prepared by Pt-catalyzed

diboration of allenes.22) A catalyst system consist-

ing of phosphine-free Pd complex and an aryl/

alkenyl iodide or iodine is effective for diboration

of a terminal C=C bond in 1-substituted and 1,1-

disubstituted allenes,23) whereas the allenes are vic-

diborylated at the internal C=C bonds with the aid

of Pd2(dba)3/optically active phosphoramidite cat-

alyst to give the corresponding 2,3-diboryl-1-al-

kenes in good yields with high enantioselectivity.24)

Synthetic transformation of
gem-diborylalkanes

Reactions of gem-diborylalkanes with electro-

philes are facilitated by borate formation with

alkyllithiums. For example, when 1,1-diboryl-

hexane and 1,1-diboryl-2-phenylethane are treated

with two molar amounts of butyllithium and then

carbon dioxide, the corresponding malonic acids are

obtained eq. [2].25) Boron enolates are also prepared

from 1,1-diborylalkanes via methyllithium-mediat-

ed borate formation and reaction with methyl

benzoate (Scheme 12).26)

R
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BCy2 R

CO2H

CO2H

1) 2 BuLi, THF, −78 °C

2) 2 CO2, H+

R = Bu, Ph 65−70%

[2]

gem-Diborylalkanes containing a halogen

atom or tosyloxy group at 3- or 4-position undergo

intramolecular cyclization upon treatment with

methyllithium, giving rise to the corresponding

cyclopropyl or cyclobutylboranes, which are readily

transformed into the corresponding alcohols by

oxidative workup with alkaline hydrogen peroxide

(Scheme 13).27)

Synthetic transformation of 1,1-
diborylcyclopropanes

Since a variety of transition metal-catalyzed

reactions using cyclopropanes are available, such

transformations, when applied to diborylcyclopro-

panes, can provide us with novel diborylated

building blocks. Diborylcyclopropanes, upon treat-

ment with 3-chloro-1-lithio-3-methyl-1-butyne, give

diborylated allenylcyclopropanes (Scheme 14).14)

The formation can be explained by 1,2-migration

of the cyclopropyl moiety in the borate intermedi-

ate with release of a chloride ion in an SN2
0 fashion.

The allenylcyclopropanes undergo ring-expansion

with the aid of a rhodium catalyst upon heating

to afford 1,2-diboryl-3-methylenecyclopentenes,

which are difficult to prepare via conventional

methods. The diborylcyclopentenes can be easily

transformed into polysubstituted fulvenes and cy-

clopentenes through oxidation and regiospecific

cross-coupling reaction, respectively, as demon-

strated in Scheme 14.
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Cross-coupling reaction of 1,1- and 1,2-
diboryl-1-alkenes with organic halides

Since tetrasubstituted ethenes with four differ-

ent carbonaceous groups are often found in bio-

logically active natural products as well as func-

tional organic materials, stereocontrolled synthesis

of those constitutes a significant and challenging

issue in organic synthesis.28) Palladium-catalyzed

cross-coupling reaction of 1,1-diboryl-1-alkenes is

one of the efficient solutions for the synthetic

problem (Scheme 15).

When 2-aryl-1,1-bis(pinacolatoboryl)-1-al-

kenes are coupled with aryl iodides with the aid of

a Pd catalyst and a base, (E)-alkenylboronates are

obtained as single stereoisomers in good to high

yields with no trace of di-coupled products

(Scheme 16).29) Irrespective of substituent R1, the

stereochemical outcome is uniform. The following

coupling reaction with other aryl iodides allows us

to synthesize diverse stereocontrolled triaryl-

ethenes. The advantages of this methodology are

that both stereoisomers of the tetrasubstituted

ethenes can be prepared simply by changing the

order of employed electrophiles, and the whole

transformation can be achieved in one-pot. The

synthetic value is demonstrated by one-pot syn-

thesis of (Z)-tamoxifen that is currently used for

treatment of breast cancer. The stereocontrol can

be extended to the reactions with alkenyl halides

and allows us to prepare stereodefined polysubsti-

tuted [3]dendralenes.

Aryl and alkenyl-substituted diborylethenes

also react stereoselectively with aryl and alkenyl

iodides, providing stereocontrolled route to poly-

functional 1,3,5-hexatrienes.30) Thus, 2,4-diaryl-1,1-

diboryl-1,3-butadienes couple with aryl iodides in

the presence of a Pd catalyst at the boryl group

cis to the C(3)=C(4) group and the corresponding

mono-coupled products are obtained as a single

stereoisomer as illustrated in Scheme 17. Subse-

quent coupling reaction of the boronates with (E)-

alkenyl iodides gives 1,3,4,6-tetraaryl-1E,3E,5E-

hexatrienes that exhibit aggregation-induced emis-

sion upon photo-excitation and thus may find

application to light-emitting materials. Palladium-

catalyzed coupling reaction of (E)-1,2-bis(pinacola-

toboryl)hex-1-ene with aryl, benzyl, alkenyl, and

allylic halides proceeds selectively at the terminal

boryl group to give 1,2-disubsituted 2-alkenylboro-

nates as a major product along with di-coupled

products (5–10%).31) Stereodefined trisubstituted

ethenes are obtained by further coupling reaction

of monoboronates as illustrated in Scheme 18.
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Meanwhile, when multi-substituted unsymmet-

rical 1,2-diborylethenes are coupled with aryl hal-

ides in the presence of a Pd catalyst and a base,

mono-coupled products are produced as a mixture

of two possible regioisomers (Scheme 19).32) Ratio of

the regioisomers varys depending on the substitu-

ents on the aryl groups of aryl halides. The second

coupling reaction with an aryl iodide connected to

solid support allows us to achieve combinatorial

synthesis of triarylated 1-butenes, an important

class of nonsteroidal anti-estrogen agents.

Cross-coupling reaction of 2,3-diboryl-1,3-
butadiene with organic halides

Diborylbutadiene 2 is useful for straightfor-

ward synthesis of 1,3-butadiene-2,3-diyl moiety-

containing organic molecules.33) For example, the

coupling reaction of 2 with 4-acetoxyphenylmethyl

chloride followed by hydrolysis of the acetate

groups gives anolignan B, isolated from Anogeissus

acuminata and shown to be an active inhibitory

constituent of HIV-1 reverse transcriptase in the

plant (Scheme 20). Facile synthesis of [4]- and

[6]dendralenes, which constitute a class of cross-

conjugated polyenes, were achieved by double

coupling reaction of 2 with 2 molar amounts of

alkenyl and dienyl iodides, respectively. Unsym-

metrical dendralenes were prepared from 2 by

stepwise coupling reactions with two different

electrophiles.

Transformations of 2,3-diboryl-1,3-butadiene
into 1,2-diborylcyclohexene
and tetraboryl-2-butene

Since 1,3-butadienes are valuable substrates in

a variety of organic reactions such as cycloadditions

and transition metal-catalyzed addition reactions of

unsaturated bonds, diborylbutadienes can be con-

verted into novel polyborylated reagents by utiliz-

ing such transformations.34) Diels-Alder reactions of

2 with electron-deficient alkenes and dimethyl

acetylenedicarboxylate proceed smoothly upon

heating, giving rise to the corresponding 1,2-dibo-

rylcyclohexenes and -1,4-cyclohexadiene that can

serve as building blocks for polysubstituted cyclo-

hexenes and benzenes, respectively, in conjunction

with Pd-catalyzed cross-coupling reaction and ox-

idation using DDQ (Scheme 21).35)
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Platinum-catalyzed 1,4-diboration of 1,3-diene

2 with 1 produces (Z)-1,2,3,4-tetraboryl-2-butene

in quantitative yield as a single stereoisomer

(Scheme 22). The resulting tetraboryl-2-butene

undergoes triple aldehyde addition in a one-pot

manner to give 2,3-bis(alkylidene)-1,5-anti-diols as

a single stereoisomer.36) The cascade reaction in-

volves sequential conversion of four C–B bonds into

two C–C bonds and one C=C bond with perfect

stereocontrol. One-pot preparation–triple carbonyl

addition starting with 2 is also possible. These

features clearly demonstrate the versatility of

polymetalated compounds as reagents for organic

synthesis with high efficiency.

Allylation of aldehydes and imines
with �-borylallyllic boranes

Enantioenriched �-borylallylic boranes, pre-

pared in situ by Pd-catalyzed diboration of allenes,

react with aldehydes and imines to give boryl-

substituted homoallylic alcohols and amines, re-

spectively, with high enanitoselectivity. The ad-

ducts are readily transformed into optically active

�-hydroxy and -amino ketones via oxidative work-

up (Scheme 23).37)

Preparation and oxidation of optically
active 1,2-diborylalkanes

Enantioselective diboration of trans-disubsti-

tuted alkenes with bis(catecholato)diboron pro-

ceeds diastereo- and enantioselectively, using a

Rh(acac)(nbd)/(S)-quinap catalyst system. The

resulting vic-diborylalkanes are led to the corre-

sponding syn-1,2-diols with high diastereo- and

enantioselectivities upon oxidation with alkaline

hydrogen peroxide (Scheme 24).38) Under the same

conditions, diboration of styrene, cis-1,2-, and 1,1-

disubstituted alkenes results in moderate enantio-

selectivities. Alternatively, rhodium-catalyzed hy-

drogenation of 2-substituted 1,2-diborylethenes

with optically active phosphine such as walphos
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allows to prepare 1,2-diborylalkanes with high

enantiomeric excess.39)

Conclusion

Recent progress on preparation and synthetic

reactions of gem- and vic-diborylated compounds

are reviewed. Diverse diborylated compounds are

now readily available in a stereodefined form owing

greatly to the development of diborylation utilizing

diborons. Efficient and straightforward synthetic

methods for polyfunctional multi-substituted and

cross-conjugated olefins as well as enantio- and

diastereocontrolled alcohols and amines have been

developed based on the chemistry of gem- and vic-

diborylated compounds.
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