
Review

Optical soliton in dielectric fibers and self-organization

of turbulence in plasmas in magnetic fields

By Akira HASEGAWA
�1,�2;y

(Communicated by Sogo OKAMURA, M.J.A.)

Abstract: One important discovery in the twentieth century physics is the natural

formation of a coherent or a well-ordered structure in continuous media, in contrary to

degradation of the state as predicted earlier from the second law of thermodynamics. Here

nonlinearity plays the essential role in its process. The discovery of soliton, a localized stable

wave in a nonlinear and dispersive medium and the self-organization of fluid turbulence are

of the major examples. A soliton is formed primarily in one-dimensional medium where the

dispersion and nonlinearity play the essential role. Here the temporal evolution can be described

by an infinite dimensional Hamiltonian system that is integrable. While a self-organization

appears in an infinite dimensional non-Hamiltonian (or dissipative) system where more than

two conservative quantities exist in the limit of no dissipation. In this manuscript, by showing

examples of the optical soliton in dielectric fibers and self-organization of turbulence in a

toroidal plasma in a magnetic field, we demonstrate these interesting discoveries. The

manuscript is intended to describe these discoveries more on philosophical basis with some

sacrifice on mathematical details so that the idea is conveyed to those in the wide area of

sciences.
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Introduction

In a system having an infinite degrees of

freedom, the second law, the law of entropy

increase, is the major discovery in thermodynamics.

The law is so fundamental that the direction of time

is defined as that of the increase of entropy.

Although the second law was originally defined as

a degradation of energy, it is now interpreted more

generally as degradation of a coherent state (or

increase of disorder), as a result of development of

the information theory. Even in a system with

infinite degrees of freedom (often referred to as an

infinite dimensional (Hamiltonian) system), if the

temporal evolution is described by a linear partial

differential equation, it is exactly integrable by

means of the Fourier transformation, the time

evolution is precisely predictable and thus results

in no change of entropy. As a result, it has been

expected that nonlinearity of the system is respon-

sible to the increase of entropy. We show, however,

the nonlinearity is also responsible for formation of

ordered structures.

In the latter half of the twentieth century,

thanks to the development of high-speed comput-

ers, time evolution of nonlinearly interacting many

body systems and infinite dimensional nonlinear

evolution equations (nonlinear partial differential

equations) have been extensively studied. Al-

though, the nonlinearity by and large was found

to be responsible to the entropy production, it was

discovered that a large class of nonlinear evolution

equations with a Hamiltonian structure is precisely

integrable and the time asymptotic behavior can

be described by a set of stable localized nonlinear

waves (called solitons) and linear dispersive waves.

In addition, it was discovered that even in non-
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Hamiltonian systems, a random initial excitation

can lead to formation of a statistically ordered state

as exemplified in two dimensional Navier-Stokes

turbulence.

In this manuscript, as potential examples of

these phenomena, we present generation of optical

solitons in dielectric fibers and formation of zonal

flow in magnetized cylindrical plasma. These ex-

amples are interesting not only as examples of

generation of ordered structure in nonlinear sys-

tems, but also in their applications to real world

problems. Optical solitons are playing the crucial

role in ultra-high-speed information transfer over

cross continental distances, while the generation of

zonal flows is expected to control plasma loss by

inhibiting turbulent transport of plasma particles to

the container wall.

Discovery of optical soliton

During the early stage of development of

optical communications over dielectric fibers (later

called optical fibers), fiber dispersion, whereby

optical information carried by different frequency

components propagates at different speeds, has

been a major concern since it leads to distortion

of an optical pulse, thus the optical information

carried by it. In 1973, when the fiber based optical

communication is still in its premature stage, the

author derived the master evolution equation for

information transfer in optical fibers1) by taking

into account of the (group velocity) dispersion and

the Kerr nonlinearity of the fiber and demonstrated

that it has a solitary wave solution for a range of

parameters of practical interests. F. D. Tappert1)

checked the stability of the solution numerically

and confirmed its stability and showed the solution

has the soliton property. If the fiber loss is

compensated for by proper optical amplifiers, the

evolution equation for the properly normalized

complex light envelope (or optical information),

qðZ; T Þ, in a coordinate moving at the linear group

velocity, satisfies the nonlinear Schrödinger equa-

tion of the form,1)

@q

@Z
¼ i

2

@2q

@T 2
þ ijqj2q: ½1�

Here, the first term on the right hand side

represents the dispersion effect, while the second

term, the nonlinear effect. In this equation, T is the

time normalized to the pulse width, Z is distance

normalized to the dispersion distance for the

corresponding pulse (distance over which the pulse

width increases by a factor of 2 due to the linear

group velocity dispersion of the fiber). The complex

amplitude q is normalized to the intensity that

gives a nonlinear phase shift of � over the dis-

persion distance. In other words, q takes a value on

the order of unity if the distance for nonlinear phase

shift is comparable to the dispersion distance. The

nonlinear phase shift occurs due to the nonlinear

dielectric response that leads to a small change of

index of refraction of the fiber (called the Kerr

effect). The nonlinear change of the index of

refraction (which increases in proportion to the

light intensity) is very small, on the order of 10�12

for a light intensity of 1mW in the fiber. However,

since the real distance of communication, which is

on the order of 106 m, if this distance is measured in

terms of the light wavelength, 10�6 m, it becomes

very large, on the order of 1012. Thus, this small

change of the index of refraction produces an

appreciable effect on the pulse distortion over this

distance. A modern fiber is designed to reduce the

dispersion effect and the dispersion distance is on

the order of the standard transmission distance of

106 m. Thus the complex amplitude in Eq. [1] is

in fact has a value on the order of unity, and the

nonlinearity and the dispersion play equally im-

portant role. However, this fact has not been

recognized widely until twenty years later, when a

fiber based long distance optical communication

became technically feasible owing to the develop-

ment of optical amplifiers and low loss dispersion

free fibers.

Concept of a soliton, a brief review

What is interesting about Eq. [1] is the fact

that this equation is integrable2) and falls into a

class of nonlinear evolution equations where the

asymptotic solution for any localized initial wave

structures can be described by a set of stable

localized waves called solitons. The term ‘‘soliton’’

was first coined by Zabusky and Kruskal3) in 1965

when, in the course of numerical solution of the

Korteweg-deVries equation,4) they discovered nu-

merically that pulse-like solitary waves were gen-

erated from a sinusoidal initial condition and they

interacted elastically each other. The Korteweg-

deVries equation is a model evolution equation that

was derived much earlier to describe the water
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surface wave with dispersion and depth dependent

nonlinearity. The soliton was recognized its signifi-

cance later when it was discovered to play a role of

fundamental solution to certain class of nonlinear

dispersive evolution equations. The pioneering

work that has demonstrated this was done by

Gardner, Greene, Kruskal and Miura5) in their

mathematical solution of the Korteweg-deVries

equation by making use of direct and inverse

scattering method used in quantum mechanics.

The method can be described as follows; Take an

eigenvalue equation with the eigenvalue given by �.

Take an operator L associated with the eigenvalue

that contains the wave amplitude, q, such as one

given by Eq. [1],

L ¼ � : ½2�

Assume that the evolution of the eigen function,  ,

is determined by another operator M that contains

also the wave amplitude, q,

@ 

@Z
¼M : ½3�

We now require that the eigenvalue � is invariant

in the evolution in the coordinate Z. The compat-

ibility condition imposed on the operators L and M

that enables invariance of the eigenvalue gives,

@L

@Z
¼ML� LM: ½4�

With a proper choice of L and M, Eq. [4] may turn

out to be identical to the evolution equation that we

are interested in solving, such as Eq. [1], then the

evolution equation is solvable by means of direct

and inverse scattering method for a prescribed

initial value of q ¼ qð0; T Þ with the help of Eqs. [2]

and [3]. The operator pair, L and M is called the

Lax pair after the discoverer of this method.6)

The asymptotic solution is then given by n set of

solitons whose characteristics (such as amplitude

and phase) are given by the invariant eigenvalues, �

and dispersive waves. The number of eigenvalues is

determined by the initial value of qð0; T Þ of Eq. [2].
qð0; T Þ plays a role of potential function if Eq. [2]

has a structure of the Schrödinger equation. Num-

ber of eigen values depends on the depth of the

potential, and this number determines the number

of solitons that emerges from qð0; T Þ in the course of

evolution of q in Z. The evolution of qðZ; T Þ is given
by Eq. [4], an example of which is given by Eq. [1].

Zakharov and Shabat7) discovered the pair of the

Lax operators L and M such that Eq. [4] gives the

nonlinear Schrödinger equation, [1]. This discovery

warrants the fact that any pulse introduced to an

optical fiber whose loss is compensated for by

optical amplifiers evolves to a soliton (or a set of

solitons) as it propagates over several dispersion

distances whether one likes or not.

The fact that a certain class of nonlinear

evolution equations can be solved by the inverse

scattering method and that the solution can be

described by a set of n solitons is a remarkable

discovery in the twentieth century applied mathe-

matics and physics. Here solitons play a role of

Fourier modes for a linear evolution equation, thus

solitons are often quoted as nonlinear Fourier

modes. Through this discovery, it is recognized

that a soliton is not merely a stable nonlinear wave

but is the elementary wave in nonlinear evolution

equation whose role is equivalent to the Fourier

mode in a linear evolution equation.

Entropy law and Hamiltonian systems

The integrability (meaning to be possible to

establish the exact causal relation between the

initial state and a state later in time on in distance)

of an evolution equation for an infinite dimensional

system as described here is closely related to that

in Hamiltonian dynamics. In order to see the

relationship of a soliton system (which has an

exact causal relation with the initial condition) to

the entropy law of thermodynamics that was also

developed for infinite dimensional systems, let us

discuss here how the present result is compatible

with the second law of thermodynamics. The

second law was developed for an infinite dimen-

sional system that is not integrable where the only

constant of motion (in the absence of dissipation)

is the total energy. In this law, the only plausible

result is that the evolution obeys the law of

increase of entropy, or the degradation of energy.

The causal relation between the initial condition

and the final state of the system is lost and the

system is believed to approach to the state of the

maximum entropy.

The hint to the relation between integrable

system and non-integrable system was discovered

also through numerical studies made for finite

dimensional evolution equations. To demonstrate

this point, let us review the classic understanding
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of evolution of many body systems. It has been

known that a two body system is integrable but a

three (or more) body systems are not. What does

this mean?

A classical two-body system is the motion of

two point particles in a gravitational field (or in an

electrostatic field for charged particles). For sim-

plicity we assume that one particle has a mass

infinitely larger the other particle and the relevant

motion is that of a particle with lighter mass. The

motion has only two degrees of freedom in the plane

determined by the initial velocity of the lighter

particle; we recognize that the motion has two

constants of motion, one the total energy, the

Hamiltonian itself, and the other, the angular

momentum. The latter conservation comes from

the point symmetry of the gravitational force. Thus

the number of the degrees of freedom and that of

the constants of motion match and as a result, the

motion of the particle is exactly integrable. If the

masses of the two particles are comparable, the

system is still integrable by describing the motions

of the particles in the frame of the center of gravity.

However, a three-body system is known not to be

integrable because the degrees of freedom exceed

the number of constants of motion. We note also

that a single charged particle in a dipole magnetic

field is also not integrable since the degree of

freedom of the motion is intrinsically three-dimen-

sional there and there are only two constants of

motion, energy and the canonical angular momen-

tum. The latter comes from the axis symmetry of

the dipole field. Since a dipole magnetic field is the

simplest form of a magnetic field, it is interesting to

note that the motion of a charged particle in any

magnetic field is intrinsically not integrable.

During the later part of the twentieth century,

extensive numerical studies have been performed to

solve many body problems that have been known

not to be integrable such as the three-body prob-

lem. Even if a system is not integrable based on the

fact that the degrees of freedom are more than the

number of constants of motion, it is expected that

such a system may be solvable numerically. It is in

fact numerically solvable but it was found that the

motion of these particles was unstable in that the

temporal evolution of the trajectories starting from

infinitely small different initial conditions could

diverge exponentially in time in a limited area in

its phase space. The meaning of non-integrable

Hamiltonian system was thus identified for the first

time numerically in the twentieth century. It should

be noticed that a chaotic solution appears only in a

limited area in phase space of the motion, thus the

system is only partially unstable in the limited area

of the phase space and integrable in other area. A

nonlinear system in which the solution can be

unstable in this sense is defined as chaotic. If a

Hamiltonian system is chaotic, the entropy can

increase in a limited area in phase space, even for a

system of a finite number of degrees of freedom

because the uncertainty of the solution increases if

the result is averaged over different initial condi-

tions. Thus the entropy law is justified even in a

Hamiltonian system (non-dissipative system) with

a small number of degrees of freedom. From this

thought experiment, one can identify the meaning

of the entropy law of thermodynamics for a

Hamiltonian system.

Now, how the infinite dimensional system of

evolution equation (that is integrable to form

solitons) is compatible with the entropy law? The

answer is that a nonlinear evolution equation that is

integrable has infinite number of conservations,

thus the degrees of freedom matches with the

number of constants of motion. The soliton system

is similar to the two body system in that both

systems are Hamiltonian systems in which the

number of constants of motion is the same as that

of the degrees of freedom. The discussion presented

here is helpful to the understanding of the self-

organization of turbulence that will be described in

the subsequent sections.

Gibbs distribution in a system having

additional constraint

Turbulence in continuous media has been

known to self-organize if the system has an in-

dependent constant of motion(s) in addition to the

energy (in the limit of no dissipation). As was

described in the previous section, integrability of a

nonlinear evolution equation is closely related to

the presence of constants of motion in addition to

the Hamiltonian itself. As a result it is expected

that if there exist additional constants of motion

even in an infinite dimensional system such as a

continuous medium, the temporal evolution would

not result in a simple increase of entropy. A well-

known example of this is the two dimensional

Navier-Stokes turbulence. Here, in addition to the
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energy, which is represented by the integrated

square of the velocity field, W ¼ 1=2
R
v2dV , the

integrated square of the vorticity called enstrophy,

U ¼ 1=2
R
ðr � vÞ2dV , is also conserved in the

absence of dissipation. The term ‘‘enstrophy’’

should not be confused with the term ‘‘entropy’’.

If one constructs the Gibbs distribution by requir-

ing maximizing entropy, with constraints of con-

stant energy and of enstrophy, it will be given

by

P ¼ const � expð��W � �UÞ: ½5�

Here alpha and beta are the Lagrange multi-

pliers representing the constraints for energy and

enstrophy. In the wavenumber Fourier space, the

spectral density of enstrophy Uk is related to that of

energy density through, Uk ¼ k2Wk, the Gibbs

distribution gives the expectation for the energy

density in the wavenumber space,

hWki ¼
1

�þ � k2
: ½6�

In the absence of the constraint of enstrophy,

Eq. [6] gives,

hWki ¼
1

�
¼ �T; ½7�

which gives the well-known equipartition law of

energy with alpha ¼ 1=�T , � being the Boltzmann

constant. However, in the presence of the constraint

of enstrophy conservation, the energy density W

can take a negative value if the Lagrange multiplier

is negative. This indicates that such a system can

have an effectively negative temperature and the

energy spectrum might concentrate at a specific

value of wavenumber. This argument is an indica-

tive of a presence of a thermodynamical equilibrium

that does not obey the classic equipartition law and

of a nontrivial equilibrium state where the entropy

is still maximized. If the spectral distribution of the

energy has a peak in certain value of the wave-

number at the maximum entropy, it is expected

that the thermodynamical equilibrium may have

certain ordered structure around at the maximum

value of energy spectral density.

The Navier-Stokes equation is a macroscopic

equation that describes evolution of the velocity

field of fluids and charge neural gases. Thus it

always accompanies dissipation (due to fluid vis-

cosity) and Gibbs distribution becomes irrelevant.

So let us discuss how the self-organization may take

place in two dimensional fluids.

Two dimensional Navier-Stokes turbulence

and inverse cascade of energy spectrum

The Navier-Stokes equation is derived from the

fluid equation of motion with constant mass den-

sity, �, and the kinematic viscosity, �,

dv

dt
¼
@v

@t
þ ðv � rÞv

� �
¼ �rT þ �r2v ½8�

for an incompressible fluids, the velocity field, v,

satisfies,

r � v ¼ 0: ½9�

The incompressibility applies to slowly moving

fluids and gases and Eq. [9] plays the role of the

equation of state. This equation of state does not

necessarily warrants that the mass density is

constant. However, if the mass density is uniform,

it can be treated as constant and the fluid equation

of motion can be described as the evolution of the

velocity field, [8]. If we further assume that the fluid

motion is constrained in a two dimensional plane, x

and y, the equation of motion can be reduced to that

of the vorticity field vector, � ¼ ðr � vÞ, directed
in the z direction. i.e., by taking the curl of [8], we

have,

d�

dt
¼
@�

@t
þ ðv � rÞ�

� �
¼ �r2�: ½10�

Furthermore, in two dimensions the velocity field

and vorticity may be expressed by a scalar stream

function,  .

v ¼ �r�  z
_ ¼ �r � z

_

½11�
� ¼ r2 z

_
;

where z
_

is the unit vector in the z direction. Note

that v is tangential to r , the fluid moves on the

 = constant contour. The evolution equation for

the vorticity [11] can then be written in terms of the

stream function only,

@

@t
r2 � ðr � ẑzÞ � rðr2 Þ � �r4 ¼ 0; ½12�

where r is the two dimensional gradient operator,

r ¼
@

@x
x
_þ

@

@y
y
_
: ½13�

One first notes that linearization of equation [12]
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gives a purely damped mode whose dispersion

relation is given by ! ¼ �i�k2, so no quasi-particles

(or eigen modes) are involved in this system. This

fact indicates that the so called weak turbulence

theory does not apply here. Second, if the viscosity

is small, a mode excited in this system is highly

nonlinear, that is, the time evolution is determined

by the second term in [12]. The ratio of the second

term (nonlinear term) to the third term (linear

viscous term), V =ð�LÞ (where L is the characteristic

scale length and V is the magnitude of the flow

velocity) is called the Reynolds number and gives

a measure of the strength of ‘‘nonlinearity’’ of the

system. If the Reynolds number is large, spatial

Fourier modes rapidly cascade two-dimensionally

to other Fourier modes and a turbulent state

results. The evolution of the turbulent spectra as

a result of the nonlinear term is called spectrum

cascade. Thirdly, the two dimensional Navier-

Stokes equation has two independent conservations

in the absence of dissipation, the total energy, W,

and the total enstrophy, U, as stated earlier. The

conservation of the total energy can be shown by

constructing a scalar product of v with Eq. [8] and

integrating over the two dimensional volume, V

@

@t
W � @

@t

Z
v2

2

� �
dV

¼ �
Z

v2

2
þ T

� �
v � dS ¼ 0:

½14�

Here the velocity field normal to the boundary

surface S may be assumed to vanish. Similarly the

conservation of the enstrophy can be constructed

from the scalar product of � and Eq. [10], as

@

@t
U �

@

@t

Z
�2

2
dV ¼ �

Z
�2

2
v � dS ¼ 0: ½15�

We note here that in three dimensions there is

an additional term on the right-hand side,
R
� �

ð� � rÞvdV , which invalidates the enstrophy con-

servation.

Turbulence spectra and inverse cascade

Weakly dissipative fluid having a large

Reynolds number is fully nonlinear and its math-

ematical description is very difficult, if not impos-

sible. One plausible argument in deriving the

turbulent spectra in such a fluid was made by

Kolmogorov.8) He argued that when a fluid having a

large Reynolds number is excited, the turbulent

energy spectrum will cascade in the wavenumber

space owing to the convective nonlinear term (the

second term on the right hand side of [8]) smoothly

to large wavenumber regions where it will be

dissipated by the viscous damping. He defined the

energy spectrum in the cascading region as the

inertial range spectrum. Let us show here how the

inertial range spectrum is obtained in three dimen-

sional Navier Stokes fluids.

If we write the Fourier amplitude of the

velocity field as vk, the rate at which the spectrum

cascades by the convective nonlinear term is given

by kvk. We like to derive the omni-directional

energy spectral density, W ðkÞ, which is defines as

such
R
W ðkÞdk gives the total energy, where k ¼

ðk � kÞ1=2; hence W ðkÞk has the dimension of v2k. The

inertial range is obtained by requiring that the

cascading rate of the energy spectrum �kvkv
2
k is

constant and given by the dissipation rate " at large

wave numbers where � is the mass density. Writing

vk ¼ ½kWðkÞ�1=2, the energy spectral density in the

inertial range is given by

W ðkÞ ¼ C
"

�

� �2=3

k�5=3 ½16�

where C is a universal, dimensionless constant.

Equation [16] represents the famous Kolmogorov

spectrum that has been experimentally observed in

various fluids.

Now let us consider what will be the inertial

range spectra for two dimensional Navier-Stokes

turbulence. As was shown, two dimensional fluids

have the enstrophy as an additional conserved

quantity. As a result, one expects two inertial

range spectra, one for the energy and the other for

the enstrophy. Since the enstrophy density is given

by k2v2k, the inertial range of enstrophy requires

that

�kvkk
2v2k ¼ "0ð¼ constÞ: ½17�

Thus, by expressing vk in terms of energy density,

the inertial range spectrum is given by

W ðkÞ ¼ C0 "0

�

� �2=3

k�3: ½18�

This result shows that the spectral density of the

energy for the inertial range of the enstrophy

cascade differs from that of the energy cascade

and given by k�3 in contrast to that of the energy

cascade, k�5=3.
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Now, how can two types of energy spectra are

possible in two-dimensional Navier-Stokes turbu-

lence? Consider that the turbulence is excited by an

injection of energy at a wavenumber k ¼ ks. The

enstrophy will also by injected at the same wave-

number. Since the enstrophy spectrum is propor-

tional to k2 times energy spectrum, it will be more

effectively dissipated by viscosity at large wave

numbers. This implies that the enstrophy cascades

to larger wave numbers at k > ks, where the energy

spectral density will obey W ðkÞ � k�3 rule of

Eq. [18]. In fact Kraichnan9) showed that in this

regime of wave numbers, there is no energy cascade.

As a result energy spectrum can cascade only to

smaller wavenumber spaces and establishe the

Kolmogorov spectrum of k�5=3. In this regime, he

showed that there would be no enstrophy cascade

and the energy spectrum cascades to smaller wave

numbers. He called this process as the inverse

cascade in contrast to the three dimensional turbu-

lence where the energy cascades to larger wave

numbers. The author10) showed that the decay of a

mode to two wave numbers based on the nonlinear

terms of the Navier-Stokes equation with the

constraints of the conservation of both energy and

enstrophy, results in spectrum condensation at

k ¼ 0, without the use of the inertial range and

selective dissipation argument of Kraichnan.

The preceding arguments produce a very

interesting and unexpected result in the two-dimen-

sional Navier-Stokes turbulence. Since the energy

cascades to smaller wave-numbers, the turbulence

will create a larger and larger structures that the

system allows and eventually some ordered struc-

tures may arise. Such a process is a form of self-

organization. Computer simulations of two dimen-

sional Navier-Stokes turbulence elucidate the self-

organization nature most clearly. Figure 1 shows

the result of a computer simulation made by Lilly11)

in 1969. Two-dimensional Navier-Stokes turbulence

is excited by a source at a medium wavenumber. As

a result of inverse cascade of the energy spectrum,

the stream function (which corresponds to energy

contours) exhibits formation of large structures as

shown in the left figure. In contrast, the vorticity

contours exhibits formation of small structures as

seen in the right figure as a result of normal cascade

of enstrophy.

Here, it may be in order to discuss the entropy

argument. How this type of self-organization is

compatible with the entropy law of thermodynam-

ics? Where does the disorder increases while seem-

ingly smooth and ordered structure arises in stream

function? Answers to these questions can be seen in

the right side figure of Fig. 1, where the vorticity

contours reveals disordered structures. The second

law of thermodynamics works in the increase of

disorder in enstrophy! What is interesting here is

that for human eyes, only steam function and not

the vorticity is visible in fluids and as a result it

appears as though the entropy decreased. The

nature is just deceiving the human eyes. We may

be happy to see ordered structures visible in human

eyes even though disorder increases simultaneously

in physical quantities invisible to our eyes. The

analogy goes like this; if the secretary cleans up

Fig. 1. Energy contours (stream function) (left) and vorticity contours (right) of fully developed two dimensional Navier-Stokes

turbulence obtained by Lilly.11) Owing to the condensation of the energy spectrum to the smallest wave-numbers, large scale

stream function is generated, while the cascading of enstrophy generates small structure eddies.

No. 1] Soliton and self-organization 7



your desktop and the result looks neat, the messy

information of the desktop has been transferred to

the secretary’s brain where the entropy has increas-

ed. But the brain of your secretary is invisible to

you, while the desk top entropy has seemingly

decreased. This is the process of self-organization.

This result reminds us of a famous quotation by

Chung-Tze of the 4th century BC, which says

‘‘People considers ladies Maochiang and Lichi as

classic beauties, Seeing them, however, fish dive

deeper, birds fly higher, and deer run away. Which

of the four knows the true color of nature?’’

Electrostatic turbulence of plasmas

in magnetic fields

In reality fluid motion can not be constrained

to two dimensional plane, thus the argument

presented in the previous section, although it is

indicative of very interesting phenomena, is a

thought experiment that does not exist in a

practical situation. In this section, we introduce

behavior of plasmas in a magnetic field and

demonstrate that its turbulence can be described

by a model equation (called the Hasegawa-Mima

equation12)) that has a property quite similar to the

two dimensional Navier-Stokes turbulence. Al-

though plasma motion in a magnetic field is three

dimensional, confinement of the plasma by the

magnetic field restricts the ion fluid motion primar-

ily in the plane perpendicular to the magnetic field.

While the electrons having a mass much lighter

than ions can move freely in the direction of the

magnetic field and their motion is intrinsically

three-dimensional. However, the evolution of the

electrostatic potential can be described in the

coordinates perpendicular to the direction of the

magnetic field.

A plasma is the forth state of matters in which

atoms are ionized by high temperature and elec-

trons and ions can move freely. It constitutes a

conductive fluid and its behavior is quite complex in

that microscopically it is a bunch of interacting

charged particles, while macroscopically it behaves

like fluids. The controlled nuclear fusion takes place

for fuels in plasma state since the temperature

required for fusion reaction is much higher than the

ionization energy. A strong magnetic field is used to

confine the plasma to achieve enough fusion reac-

tion. It was found that plasmas confined by a

toroidal magnetic field in a toroidal container

exhibits turbulence in the microscopic scale (the

scale of ion gyro-radius). Anomalous diffusion of the

plasma across the confining magnetic field has been

the main concern in achieving the controlled fusion

reaction sufficient to produce enough energy out-

put. Consequently, it is of fundamental importance

to understand such plasma turbulence and discover

a way (if any) to control the anomalous diffusion.

The Hasegawa-Mima equation that Mima (at

Osaka University) and the author derived in 1978

that describes such turbulence is simplest yet most

fundamental evolution equation for plasmas in a

strong magnetic field. It contains the feature of

both microscopic and macroscopic plasma behavior

where the evolution of the ion vorticity is described

by electrostatic potential field, �,

@

@t
ðr2�� �Þ

� ½ðr�� z
_Þ � r� r2�� ln

n

B

� �� �
¼ 0:

½19�

Here, n and B are spatially dependent plasma

density and magnetic flux density, and r is the

gradient operator perpendicular to the magnetic

field which is directed to the z axis. This equation

differs from the two-dimensional Navier-Stokes

equation, [12], in two aspects. One the second term

on the right hand side that originates from the

electron motion in the z direction, and the other the

fourth term that originates from the inhomogeneous

background density and the magnetic flux density.

A very interesting aspect of this equation is

that it has a property quite similar to the two

dimensional Navier-Stokes equation, in particular

it contains two independent conservations, the

energy,

@W

@t
�
@

@t

Z
½ðr�Þ2 þ �2�dV ¼ 0; ½20�

and the (potential) enstrophy,

@U

@t
¼
@

@t

Z
½ðr�Þ2 þ ðr2�Þ2�dV ¼ 0: ½21�

This fact is a strong indicative of inverse cascade

of turbulence in a plasma turbulence in a strong

magnetic field. As a matter of fact, computer

simulations based on an evolution equation that

includes viscous dissipation as well as source of free

energy due to pressure gradients and magnetic field

curvature did reveal this feature. The simulation

8 A. HASEGAWA [Vol. 85,



was performed by Hasegawa and Wakatani13) and a

result is shown in Fig. 2.

What is shown here is the equipotential lines

(solid (dotted) lines are for positive (negative)

potentials) in the cross section of the cylindrical

plasma. The magnetic field is directed perpendicu-

lar to the plane. The equipotential lines are

equivalent to the stream function, that is, plasma

flows along these lines. The inverse cascade process

produces increased size of the turbulence structure

and as a result, the equipotential lines are enlarged.

The largest scale size of the equipotential line is

limited by the cylindrical size of the plasma, but the

constraint of the conservation of the total angular

momentum inhibits the maximum size of the

equipotential line to a size smaller than that of

the cylindrical container. The spectral energy of

the microscopic turbulence of the plasma is cascad-

ed to macroscopic plasma flows and plasma rotates

in the plane perpendicular to the magnetic field.

The direction of the rotation is proportional to the

radial electric field, �@�=@r. However the conser-

vation of the angular momentum does not allow the

plasma to rotate in one direction as a whole, so the

plasma ends up rotating in one direction in the core

region and to the opposite direction outside of the

region. Therefore, a sheared azimuthally flow is

established as a result of the inverse cascade. This

remarkable result has been demonstrated in a

number of experiments some twenty years after

the derivation of the Hasegawa-Mima equation.

Furthermore, the simulation result of Hasegawa

and Wakatani13) has indicated that convective cells

that had been believed to cause the anomalous

plasma diffusion are inhibited to move across co-

cylindrical equipotential line produced by the

inverse cascade. This result is even more remark-

able since it indicates that plasma turbulence can

reduce anomalous diffusion contrary to the common

belief. A similar phenomenon in fact can be seen in

nature. Figure 3 is the picture of the Jovian at-

mosphere taken by the spacecraft, Voyager. The

Jovian atmosphere is tinted by the sulfur gas

emitted from the satellite Io. As a result, the zonal

flows in the atmosphere are clearly visible. The

generation of the zonal flow is believed as a

consequence of the self-organization.14) The famous

red spot seen near the right bottom corner of the

picture has been known to be stable for hundreds of

years having been sandwiched by the zonal flow.

The zonal flow is inhibiting the latitudinal motion

of the red spot. As a matter of fact, the structure of

the equation that describes atmospheric motion in a

rotating planet is identical to the Hasegawa-Mima

equation.

Concluding remarks

One important discovery in the 20th century

(a) (b)

Fig. 2. Equipotential lines that also correspond to the stream function formed at the initial (a) and later (b) time in a cross-section

of a toroidal plasma. Here solid (dotted) lines show positive (negative) equipotentials. It can be seen, after plasma turbulence is

excited, a closed coaxial equipotential lines (that correspond to the stream function) are formed (right figure). This is a result of

self-organization of turbulence. As a result plasma acquires zonal flow which tends to inhibit radial motion of convective eddies

and helps to reduce anomalous diffusion. Simulation results obtained by Hasegawa and Wakatani.13)
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physics and mathematics is the formation of

ordered or coherent structures that appears in

temporal (or spatial) evolution of disturbances in

nonlinear continuous media. Examples presented

in this paper are formation of optical solitons in

dielectric fibers and of coaxial zonal flows in a

cylindrical plasma in magnetic field. Compatibility

of these phenomena with the entropy law of

thermodynamics is discussed. In case of soliton

formation, the infinite numbers of conservations

intrinsic to the evolution equation assures the

integrability and exact causal relation between the

initial condition and the final states. Thus the

entropy has no room to increase. In case of

turbulence self-organizations, additional conserved

quantities, such as squared vorticity (called the

enstrophy) is shown to be responsible to the

increase of the system entropy and as a result, the

energy can achieve an ordered structure.

Although exact (in case of solitons) and

plausible (in case of turbulence self-organizations)

mathematical descriptions have been derived for

these cases, high speed computers developed in the

later half of the 20th century have contributed

fundamentally to these discoveries.
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Fig. 3. The Jovian atmosphere observed by the spacecraft

Voyager.
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