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Superalgebra and fermion-boson symmetry

By Hironari MIYAZAWA�1,y

(Communicated by Toshimitsu YAMAZAKI, M.J.A.)

Abstract: Fermions and bosons are quite di�erent kinds of particles, but it is possible to

unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra.

In this article we discuss the development of the concept of symmetry, starting from the rotational
symmetry and �nally arriving at this fermion-boson (FB) symmetry.
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Introduction

Symmetry is invariance under transformation.
Right-left symmetry, the invariance under the space

re�ection, is one of the most elementary examples.

Spherical symmetry is the invariance under the space
rotation. Our three dimensional space is supposed to

be invariant under the space rotation.

The above examples are transformations of
space coordinates. There are other symmetries con-

nected with transformations of the matter of our

world. Proton and neutron are almost identical ex-
cept for the charge. They can be regarded as the

same particle, the nucleon, in two di�erent states.

Lambda, one of the strange particles, di�ers in
mass from the nucleon by 12 percent, and can hardly

be regarded as the same. However, we can separate

the hamiltonian into symmetric and asymmetric
parts, �rst consider the symmetric part only and

then consider the asymmetry. In this way the

Lambda becomes a symmetry member of the nu-
cleon. This symmetry is arti�cial and is not an intrin-

sic one given by god. Anyway, this way of separating

the system into symmetric and asymmetric parts
worked very well in strange particle physics.

So far, the space symmetry and the internal
symmetry are separate and independent. Eugene

Wigner combined these two into one symmetry and

introduced the supermultiplet. In this scheme, nuclei

with di�erent spins are grouped as symmetry mem-

bers of a supermultiplet. Feza G€ursey and Luigi

Radicati and Bunji Sakita extended the idea to in-
clude the strange particles. Here all important mesons

are grouped in one supermultiplet, and baryons are

in another.
The next question is: is it possible to incorporate

mesons and baryons in one symmetry multiplet?

Mesons obey Bose statistics and baryons obey Fermi
statistics, so they cannot be regarded as the same

particles. Nevertheless, by extending the notion of

symmetry, even bosons and fermions can be grouped
together. For this fermion-boson symmetry, the ordi-

nary Lie group theory is insuf�cient. A new mathe-

matical concept, called superalgebra, must be intro-
duced. In the following sections we shall see how the

idea of symmetry was extended to the FB symmetry.

Space symmetry

Our three dimensional space is spherically sym-

metric. The spherical symmetry means the invari-
ance under the rotation, represented by the group

SO(3). In this article we shall mainly use the term

‘‘invariance’’ to mean the invariance of the hamil-
tonian of the system. The rotation group SO(3) is

mathematically equivalent to the special unitary

group SU(2), where the fundamental representation
consists of two complex elements.

q"
q#

� �
: ½1�

Physically q " and q # are two states, the states

of spin up and down of the fundamental spin 1/2

particle. Combination of these elements and its com-
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plex conjugate, or bound state of this particles and

their antiparticles, produce group representations or
multiplets of de�nite angular momentum. A multip-

let is a set of degenerate states of a de�nite quantum

number, the angular momentum this case. All mem-
bers of a multiplet are the same particle, only the

direction of its angular momentum being di�erent in

space. The term fundamental means that any spin
state can be constructed from q " and q # and their

antiparticles.

Space re�ection is a separate transformation
group. It is known that the space re�ection symme-

try only holds approximately, violated by the weak

interaction. On the other hand, the rotational sym-
metry holds exactly, so far as there is no external

�eld. In this article we shall mainly consider continu-
ous transformations.

Symmetries in matter

Our space is spherically symmetric. Similar sym-
metry is found in the matter. The atomic nucleus

consists of protons and neutrons. Proton and neu-

tron are quite similar. Their masses di�er only by
0.1 percent. Except for the electric charge and the

small mass di�erence, proton and neutron are identi-

cal. They can be regarded as two di�erent states of
one particle, which is called nucleon. Similarly to

eq. [1] we put

N ¼
p

n

� �
: ½2�

The dominant mass term in the hamiltonian can be

written in the form

H0 ¼M
X

k

ðay
pk
apk þ aynk

ankÞ: ½3�

where a and ay are annihilation and creation ope-

rators, respectively, and k is the momentum of the
particle. This H0 is invariant not only under the ex-

change of p and n but also under the SU(2) transfor-

mation of N (eq. [2]), It turned out, experimentally,
that the whole hamiltonian is invariant under the

SU(2). We introduce another three dimensional

space, which is called the isospace. Proton and neu-
tron form an isodoublet, a state of isospin 1/2, pro-

ton being the state of isospin up and neutron isospin

down. The nuclear system is invariant by the rota-
tion in the isospace. Here the small p-n mass di�er-

ence and the coulomb interaction, which is small

compared with the nuclear interaction, are neglected.

Charged and neutral pions form an I ¼ 1 mul-

tiplet which is almost degenerate in mass. Experi-
ments show that in reactions of nucleons and pions

the isospin is conserved. An example is: The deu-

teron and the alpha particle are known to have
isospin zero. Then the reaction

dþ d! �þ �0; ½4�
can never happen if the isospin is conserved, the left-
hand side being isospin 0 and the right-hand side

being isospin 1. In fact, this reaction is found to

occur very rarely.
Neglecting the electromagnetic interaction, which

is not large compared with the strong interaction,

the nucleon-pion physics is invariant under the rota-
tion in the isospace. This is an experimental fact. So,

we might say that this symmetry is given by god.

Strange particles

Lambda is a companion of the nucleon. It also

has spin 1/2 and can turn into a nucleon. Further,
lambda has a new quantum number, strangeness,

which is conserved in the strong interaction. In addi-

tion to the fundamental elements proton and neu-
tron (eq. [2]), we need a new element as the carrier

of the strangeness.

B ¼
p

n

�

0
B@

1
CA: ½5�

This triplet cannot be fundamental. Other
strange particles, sigma and xi are quite similar to

nucleon and lambda and must be grouped together

in one multiplet. Then the quark model is intro-
duced. In this model the fundamental triplet consists

of up quark u, down quark d, and strange quark s,

Q ¼
u

d

s

0
B@

1
CA: ½6�

Mesons are bound states of quark and anti-
quark. Baryons, that is, nucleon, lambda and their

brothers, are bound states of three quarks. We con-

sider the symmetry among these particles.
Now that we have the fundamental triplet of

elements, we want to consider the mixing among

the three, the SU(3) group. u and d form an isodoub-
let and accept SU(2) transformation. However, s is

much heavier than u and d, and the triplet does not
form a degenerate multiplet.
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Still, we wish to stick to the SU(3). We split the

hamiltonian into SU(3) symmetric part and asym-
metric part, and consider only the symmetric part,

disregarding the asymmetric part as perturbation.

This SU(3) symmetry is man-made, and is not given
by god. We shall see how this arti�cial symmetry

works in strange particle physics.

Group theoretically the nine states of Q �Q split
into an eight-dimensional representation and a one-

dimensional one,

3� 3 ¼ 8þ 1: ½7�
Each representation corresponds to a degenerate

multiplet. In fact, an octet of pseudoscalar mesons

and a singlet of pseudoscalar meson have been found
experimentally. For spin 1 bound states, also a sin-

glet and an octet of vector mesons have been found.

Baryons are bound states of three quarks. Three
quark products split into four representations.

3� 3� 3 ¼ 10þ 8þ 8þ 1: ½8�
The ten dimensional representation corresponds to

the decuplet of spin 3/2 baryons. The eight corre-
sponds to the spin 1/2 baryon octet. The rest, 8þ1

have not yet been established.

In this way all the known hadrons (baryons and
mesons), can be classi�ed as multiplets or representa-

tions of SU(3), but each multiplet is not degenerate.

The mass di�erence among a multiplet member can
be calculated by introducing the mass di�erence

among the elementary triplet as perturbation. For

the baryon octet, the mass formula is

1

2
½MðNÞ þMð�Þ� ¼ 1

4
½3Mð�Þ þMð�Þ�: ½9�

It is remarkable that the mass formula [9] is satis�ed
to within a percent of error. Similar formula can be

derived for the octets of mesons, but they are not so

well satis�ed experimentally.
Thus, we see that the man-made SU(3) works

well for the classi�cation of hadrons and for deriving

relations of their properties.
A charming idea is that intrinsically the hamil-

tonian is symmetric under the SU(3), but the sym-

metry is broken spontaneously. In this article, how-
ever, this possibility will not be considered.

Wigner’s supermultiplet

Let us disregard the strange particles for a mo-
ment. We have two symmetries, the space rotation

SU(2)Sp and the isospace rotation SU(2)Iso. These

two are independent. Wigner1) combined these two

symmetries.
The fundamental elements are as follows:

p"
p#
n"
n#

0
BB@

1
CCA: ½10�

Since the masses of the four elements are equal, the
mass term in the hamiltonian is invariant under

the SU(4) transformation. Thus Wigner extended
the symmetry as follows:

SUð2ÞSp � SUð2ÞIso ! SUð4ÞSI; ½11�

The extended symmetry is applied to nuclear phy-

sics. Nuclei with di�erent spins or isospins are clas-
si�ed in a supermultiplet. Wigner showed that this

symmetry gave a good �t to light nuclear states

where the Coulomb interaction is unimportant.
This idea of combining the space and internal

symmetries was extended to the strange particle

physics by G€ursey and Radicati2) and by Sakita.3)

The fundamental elements are

q ¼

u"
u#

d"

d#
s"
s#

0
BBBBBBBB@

1
CCCCCCCCA
; ½12�

and they consider the symmetry SU(6)SI.

Mesons are bound state of q and �q. The thirty-

six states decompose into two representations.

6� �6 ¼ 35þ 1: ½13�
The lowest-mass mesons, an octet of pseudoscalar
mesons and a nonet of vector mesons, �t precisely to

the 35.

Baryons are bound states of three quarks.

6� 6� 6 ¼ 56þ 70þ 70þ 20: ½14�
The octet of spin 1/2 baryons and the decuplet of

spin 3/2 baryon resonances �t precisely into the 56.

In this way, all of the known mesons belong to
one representation of the group SU(6), and the bary-

ons belong to another representation. Members of

each multiplet are not degenerate in mass. The sym-
metry is man-made and cannot be exact. A mass

formula can be written for each multiplet, and these

formulae are found to hold reasonably exactly. How-
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ever, the most striking result is that the SU(6) theory

gives the ratio of the magnetic moments of the pro-
ton and neutron to be

�p
�n
¼ � 3

2
; ½15�

assuming that each quark has a magnetic moment

proportional to its charge. The relation [15] holds
almost exactly.

One additional comment is about the spin-

statistics relation. A quark is a spin 1/2 particle and
must obey Fermi statistics. The baryon’s multiplet,

56 in eq. [13] is totally symmetric under permuta-

tions of the quarks, violating the statistics. This is
evaded by introducing another internal variables

called the color degrees of freedom. Each quark can

have three color states, red, blue and green. The ob-
served baryons are totally antisymmetric in the color

variables so that they are totally symmetric in other

variables.
Now that the color degrees of freedom have been

introduced, we are tempted to consider a large group

SU(18)SIC, combining the color with other variables.
However, the color degrees of freedom are never ob-

served in nature.

Symmetry and Lie algebra

For continuous transformations, it is more con-

venient to consider in�nitesimal transformations, or
the generators of the group. The generators often

have de�nite physical meaning: For instance, for

SU(2)Sp the generators are the three components of
the angular momentum.

If the hamiltonian H is invariant under a contin-

uous transformation group, its generators Gi com-
mute with H. If two quantities Gi and Gj commute

with H, the commutator of Gi and Gj also commutes

with H.

½Gi;H � ¼ 0; ½Gj;H � ¼ 0!

Gk ¼ ½Gi;Gj�; ½Gk; H � ¼ 0:
½16�

So, the set of Gi’s forms a Lie algebra with the com-
mutation relations of the form.

½Gi;Gj� ¼
X

cijkGk: ½17�

This set generates the continuous symmetry group.

A set of operaters which commute with the hamilto-

nian de�nes a symmetry algebra.
Let us denote the creation and annihilation

operators of the fundamental elements by ay
k; i

and

ak; i; i ¼ 1; 2; � � � ; n. Here k denotes the kinetic mo-

mentum of the particle. The mass term of the hamil-
tonian is

H0 ¼M
Xn
i¼1

X
k

ay
k; i
ak; i : ½18�

The operators

Gij ¼
X

k

ay
k; i
ak; j; ½19�

commute with H0 and form a symmetry Lie algebra,

which generates the unitary group U(n). The traceP
Gii is the total number of particles, and the re-

maining Gij form the special unitary algebra SU(n).

Fermion-boson symmetry

Starting from the rotational symmetry, SU(2)Sp,
the concept of ‘‘symmetry’’ has been extended,

partly arti�cially but supported by experiments.

The resulting symmetry is SU(6). Here all important
baryons are classi�ed as a 56-dimensional multiplet,

and the low lying mesons are classi�ed as a 35-

dimensional representation.
Can we go further? In other words, is it possible

to classify baryons and mesons in one multiplet?

Since baryons are fermions and mesons are bosons,
it is not possible to mix them by ordinary transfor-

mations.

Let us assume that the fundamental particles in-
clude both fermions and bosons. Suppose that there

are n fundamental Fermi-like elements (denoted by

ai; a
y
i ; i ¼ 1; � � � ; n) and m fundamental Bose-like

elements (denoted by ai; a
y
i ; i ¼ nþ 1; � � � ; nþm).

Their masses are not the same, but we write the fun-

damental hamiltonian as follows:

H ¼M
X

k

Xnþm
i¼1

ay
k; i
ak; i þ � � � ¼ H0 þ � � � : ½20�

It may appear that H0 is invariant under SU(nþm)

transformation, but this is not the case. Fermi-like

element and bose-like element cannot be added;
they cannot be mixed. However, ‘‘generators’’ can

be de�ned as eq. [19], and they commute with H0.

Gij ¼
X

k

ay
k; i
ak; j; G

y
ij ¼ Gji; ½Gij;H0� ¼ 0: ½21�

The operation of Gij makes H0 invariant and

so the set of Gij de�nes a symmetry of the system,
although the set does not generate a continuous

group.
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If one of the (i, j) is Fermi-like and the other is

Bose-like, that is, if 1 � i � n; nþ 1 � j � nþm or
1 � j � n; nþ 1 � i � nþm, the Gij is Fermi-like

and commutators between them cannot be calcu-

lated but anti-commutators are,

fGij; Gklg ¼ �jkGil � �ilGkj; Fermi�Fermi case:

½22�
Otherwise, the commutators can be written as

½Gij; Gkl� ¼ �jkGil � �ilGkj; other cases; ½23�
or, in short,

½Gij; Gkl�	 ¼ �jkGil � �ilGkj: ½24�

Relation [24] contains both commutators and

anticommutators so the set of operators Gij does not
form a Lie algebra. An algebra with anticommu-

tation as multiplication is called a Jordan algebra.

Our system is a mixture. Multiplication is de�ned by
the anticommutator between Fermi-like elements

and by the commutator for other combinations.

Our ‘‘superalgebra’’4) does not generates a con-
tinuous group. Still, from the commutation-anticom-

mutation relations [24], we can construct represen-

tations, determine multiplets and calculate matrix
elements. The operators Gij and the relations [24]

are similar but, of course, not equal to the generators

of the special unitary group of nþm dimensions. We
call this superalgebra SU(njm).

In this way fermion-boson symmetry can be

achieved by introducing a superalgebra. Fermions
and bosons can be grouped in a multiplet. Each fer-

mion and boson in a supermultiplet are the same

particle in di�erent phases.

SU(6j21) Symmetry

Having arrived at the idea of supersalgebra, we
try to extend the S(6) symmetry to include baryons

and mesons in one supermultiplet. In addition to the

elements of SU(6), eq. [12], a set of Bose particles
must be included in the fundamental elements. This

set of bosons must be an SU(6) multiplet by them-

selves. The simplest possibility is a singlet spin 0 par-
ticle but this is insuf�cient. The next possibility is 15

or 21, and we see that the 21-dimensional multiplet

made from �q�q system is most convenient.5) The 21

representation consists of an SU(3) triplet of scalar

mesons and a sextet of axial-vector mesons. These,

together with the triplet of quarks (eq. [12]), form
the fundamental elements of SU(6j21).

F ¼ 6
21

� �
: ½25�

The adjoint representation of SU(6j21) or F �F
consists of, in terms of the SU(6) multiplets,

ð27;27Þ ¼ ð6þ 21;6þ 21Þ

¼ 1þ 35þ 56þ 56þ 70þ 70þ 1

þ 35þ 405:

½26�

The �rst two terms, 1 and 35, are the well-estab-

lished negative-parity mesons, that is, pseudoscalar

singlet, pseudoscalar octet, vector singlet and vector
octet mesons.

The next 56 is the baryon octet and decuplet.

The 56 is their antiparticles. 70 and 70 are multip-
lets of baryons and antibaryons, but they are not

yet established. The remaining 1 þ 35 þ 405 are

positive parity mesons. 1 þ 35 contains singlet and
octet of scalar mesons and singlet and octet of axial-

vector mesons. 405 contains tensor mesons which are

not yet established. In this way, all of the well-estab-
lished hadrons are classi�ed in a supermultiplet of

SU(6j21).

The Bose elements 21 added to the triplet of
quarks to form SU(6j21) are actually two antiquark

states, and cannot be regarded as fundamental. This
symmetry is not intrinsic but is arti�cial. However,

by using this FB symmetry, all known hadrons

(baryons and mesons) are classi�ed as the same, and
relations between scattering amplitudes, for instance,

can be derived. The symmetry is broken, of course.

Diquarks will be heavier than quarks. Then we have a
relation among the masses of negative parity mesons,

positive parity mesons and baryons:

MðM�Þ þMðMþÞ ¼ 2MðBÞ: ½27�
This relationship seems to be roughly satis�ed ex-
perimentally.

One comment is that in this SU(6j21) scheme,

there is no problem of statistics, and the color de-
grees of freedom are not necessary. All elements can

have integral charges.

Is our space fermion-boson symmetric?

Fermion-boson symmetry claims that a super-

multiplet contains both fermions and bosons. This is

a convenient and useful way to classify and handle
the existing hadrons. This is an arti�cial symmetry

and cannot be regarded as intrinsic one given by god.

Our three dimensional space is spherically sym-
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metric. Is it possible that the space is fermion-boson

symmetric, either intrinsically or arti�cially?
The simplest superspace can be created from the

fundamental elements,

P ¼
q"
q#
s0

0
@

1
A; ½28�

where the s0 stands for a spin 0 particle. The symme-
try algebra SU(2j1), from eq. [28], is in parallel to the

SU(3), eq. [6], which generates the internal symme-

try. If our space is FB symmetric as is given by
SU(2j1), every particle must have its super partner.

For instance, electron must have boson partner of

similar mass. No such boson has been found.
It is proposed that the space FB symmetry holds

at very short distance, that is, at very large energy

scale. All known particles are members of a super-
multiplet of zero-mass states, although they are non-

degenerate due to small symmetry breaking. Nothing

is wrong with this scheme. However, relations similar
to eqs. [9], [15] or [27] are needed to support this pro-

posal.

Theoretically, the introduction of a spin 0 parti-
cle as a fundamental element is not without doubt.

In the case of internal symmetry, the third element,

� in eq. [5] or s in eq. [6], was necessary as a carrier
of the conserving quantum number strangeness.

With regards to the symmetry of the space, there is

no such necessity. All spin states can be created
from spin 1/2 particles and its antiparticles and the

spin 0 object is not necessary. The number of the
fundamental elements must be as small as possible.

We have been considering the space rotation

SU(2)Sp. The Lorentz group SL(2,C) can be made
Fermion-boson symmetric by introducing boson ele-

ment in addition to the fundamental two-component

spinor. Here the symmetry means the invariance of
the lagrangean of the system and not of the hamilto-

nian. The symmetry can be de�ned by a superalge-

bra, that is, by commutation and anticommutation
relations. This scheme is called supersymmetry.6)

It is to be noted that Wigner’s symmetry (eq.

[11]), and the subsequent extensions (SU(6) and
SU(6j21)), cannot be made relativistic. The internal

variables transform as a representation of the special

unitary group while Lorentz spinor transforms as a
representation of the special linear group, and they

cannot be mixed in a larger group. The fermion-

boson symmetry can be relativistic, in so far as the

added elements are lorentz covariant quantities and

independent of internal symmetry. The total symme-
try is the direct product of the internal symmetry

and the relativistic space symmetry.

Conclusion

Fermion-boson symmetry attempts to regard

fermions and bosons as the same particles. Ordinary
symmetry is de�ned as invariance under a transfor-

mation group. In the case of the fermion-boson sym-

metry, there is no transformation group. The symme-
try is de�ned not by a group but by a superalgebra,

where the multiplication is de�ned by anticommuta-

tor in some cases and by commutator in others. A
representation of the superalgebra (that is, a super-

multiplet) contains both fermions and bosons. For

example, all important hadrons can be classi�ed in
one supermultiplet.

While the nonrelativistic fermion-boson symme-

try works well in hadron spectroscopy, the relati-
vistic FB symmetry fails to do so. If the space is

fermion-boson symmetric, all particles must have

their super partner of di�erent statistics. No such
partners are found. It is possible to expect that the

space FB symmetry is seriously broken but would

hold at very short distances. We can split the system
into FB symmetric part and symmetry breaking

part, and �rst consider the symmetric part. To see if

this man-made symmetry works, further investiga-
tion is necessary.
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