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N-myristoylated proteins, key components in intracellular signal
transduction systems enabling rapid and flexible cell responses

By Nobuhiro HAYASHI*1,*2,† and Koiti TITANI*2

(Communicated by Shigetada NAKANISHI, M.J.A.)

Abstract: N-myristoylation, one of the co- or post-translational modifications of proteins,
has so far been regarded as necessary for anchoring of proteins to membranes. Recently, we have
revealed that N,-myristoylation of several brain proteins unambiguously regulates certain protein–
protein interactions that may affect signaling pathways in brain. Comparison of the amino acid
sequences of myristoylated proteins including those in other organs suggests that this regulation is
involved in signaling pathways not only in brain but also in other organs. Thus, it has been shown
that myristoylated proteins in cells regulate the signal transduction between membranes and
cytoplasmic fractions. An algorithm we have developed to identify myristoylated proteins in
cells predicts the presence of hundreds of myristoylated proteins. Interestingly, a large portion
of the myristoylated proteins thought to take part in signal transduction between membranes
and cytoplasmic fractions are included in the predicted myristoylated proteins. If the proteins
functionally regulated by myristoylation, a posttranslational protein modification, were understood
as cross-talk points within the intracellular signal transduction system, known signaling pathways
could thus be linked to each other, and a novel map of this intracellular network could be
constructed. On the basis of our recent results, this review will highlight the multifunctional aspects
of protein N-myristoylation in brain.
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calmodulin, CAP-23/NAP-22, MARCKS, HIV Nef

Introduction

Protein N-myristoylation was first identified in
the catalytic subunit of cAMP-dependent protein
kinase from bovine cardiac muscle using modern
mass spectrometric techniques by K. Titani and his
coworkers in 1982.1) After that, calcineurin,2) MMLV
p15gag,3) NDAH cytochrome b5 reductase,4) pp
60src 5)–8) were found to be myristoylated using similar
techniques in succession. The N-termini of proteins
are modified with myristate, a 14-carbon saturated
fatty acid (Fig. 1), and the enzymology of myristoy-
lation reaction has been well characterized.9) NMT,
which exists in all eukaryotes, catalyzes the reaction.
In the case of human, two enzymes are known to
catalyze the reaction. The substrates are co-transla-
tionally myristoylated (Table 1). The myristoylated
site is limited to N-terminal glycine, and the linkage
is formed by an amide bond. Experiments using
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substrate peptides have revealed that the enzyme
recognizes approximately only ten residues from the
N-termini of substrates, and there is no consensus
sequence for myristoylation besides glycine at the
second position and serine at the sixth position, i.e.,
MGXXXSXX in the precursor proteins. For myri-
stoylation by NMT, the removal of initiation methi-
onine residue by methionyl aminopeptidase is
needed, since exposed glycine residue at N-termini
is required. The detection of myristoylation has
been difficult because of low chemical reactivities of
the myristoyl group, but recent advances in mass
spectrometry have made the detection relatively
easy. Besides myristoylation, another lipid N-modi-
fication was also identified.10) In this article, recent
studies on myristoylated proteins including post-
genome research studies are described.

Function of myristoyl moiety

Anchoring to membranes. In consideration of
its strong hydrophobicity, myristoylation has been
thought to act as an anchor for modified proteins to
biomembranes.11),12) However, it is obvious that the

myristoyl moiety alone is not sufficient to capture
large molecules, such as proteins, at membrane
fractions. Other protein fatty acylations such as
S-palmitoylation and the presence of other basic
regions in the molecule in addition to myristoyla-
tion might function to strengthen affinities of the
myristoylated proteins to membranes.11),13) Unlike
membrane proteins with trans-membrane domains,
myristoylated proteins can leave membranes under
their regulation using certain signaling systems.

Interaction with CaM. We have found that
CAP-23/NAP-22, a neuron specific protein isolated
from rat brain, is N-myristoylated, and that the
myristoylation is essential for its interaction with
CaM in the presence of Ca2+. In addition, the CaM-
binding site has been narrowed down to the myristoyl
moiety together with the N-terminal basic domain of
9 amino acid residues, GGKLSKKKK.14),15)

CaM is a small calcium-binding protein (16.7
kDa) involved in a wide range of cellular Ca2+-
dependent signaling pathways through various
enzymes, including protein kinases, protein phospha-
tases, nitric oxide synthase, inositol triphosphate
kinase, nicotinamide adenine dinucleotide kinase, and
cyclic nucleotide phosphodiesterase.16)–19) CAP-23/
NAP-22, a neuron-specific protein, was first isolated
from chicken brain and characterized as a 23 kDa
cortical cytoskeleton-associated protein (CAP-23),20)

and the rat homologue was later isolated as NAP-
22.21)

To examine the effects of myristoylation on
the interaction of CAP-23/NAP-22 with CaM, two

Fig. 1. Chemical structure of the myristoyl moiety. A myristoyl
group binds to an N-terminal glycine residue covalently through
an amide linkage.

Table 1. Comparison between myristoylation and palmitoylation

N-myristoylation S-palmitoylation

Modifying group; myristate palmitate

Chemical structure; 14-carbon saturated fatty acid 16-carbon saturated fatty acid

Modification enzyme; N-myristoyl transferase dependent on each case

Timing; co-translational post-translational

Linkage; Gly Cys

Chemical bond; amide thio-ester

Modified proteins; Src family members G protein coupled receptors

, subunits of G proteins HLA

HIV Nef caveolin

Calcineurin B CD4

recoverin influenza HA

catalytic subunit of A kinase GAP43

cytochrome b5 reductase H-Ras, N-Ras

NAP22 , subunits of G proteins

MARCKS Src family members
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recombinant proteins, i.e., non-myristoylated and
myristoylated CAP-23/NAP-22 proteins, were pro-
duced in E. coli. For the myristoylated protein, a
pBB131 vector (a gift from Dr. J. I. Gordon)
containing yeast N-myristoyl transferase cDNA was
co-transformed.22),23) Both of its proteins were
purified by successive column chromatography on
Phenyl-Sepharose and Resource RPC (Amersham
Pharmacia Biotech), and the authenticity of the two
proteins was established by electrospray mass spec-
trometry (Fig. 2). The mass of the non-myristoylated
protein was determined to be 21,629.2 ± 2.9Da (the
theoretical mass; 21,629.1Da), while that of the
myristoylated protein was 21,839.5 ± 2.0Da (the
theoretical mass; 21,839.5Da). These results indi-
cated that the two proteins differed only in their
N-terminal myristoylation.

Interaction of the two recombinant proteins
with CaM was analyzed by the binding to CaM-
agarose beads (Fig. 3). Clearly, only the myristoy-
lated protein bound to the CaM-beads, and most of
the bound protein was eluted with a Ca2+-free buffer.
The non-myristoylated protein did not bind to the
CaM beads to any significant extent. Therefore,
CAP-23/NAP-22 bound to CaM in a Ca2+ and
myristoylation-dependent manner. It was also shown
that the binding of mC/N9, N-myristoylated 9
residue peptide corresponding to the N-terminal
CaM binding site of CAP-23/NAP-22, to CaM was

dependent on the existence of the myristoyl moiety
(Fig. 4). Furthermore, phosphorylation of Ser5 in the
N-terminal region of CAP-23/NAP-22 by PKC
abolished the binding of CAP-23/NAP-22 to Ca2+/
CaM (Fig. 4).14) This was assumed to be caused by
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Fig. 2. Liquid chromatography (left panel)/electrospray mass spectrometry analyses (right panel) of recombinant non-myristoylated
(A) and myristoylated (B) CAP-23/NAP-22. The retention time of myristoylated CAP-23/NAP-22 on the reversed-phase liquid
chromatography (left panel of B) was longer than that of non-myristoylated CAP-23/NAP-22 (left panel of A). Each fraction was
directly injected into the electrospray mass spectrometry apparatus (right panels). The difference between the observed molecular
weights (213.7Da) corresponded to that of the myristoyl group (210.0Da).

Fig. 3. Effects of myristoylation of recombinant CAP-23/NAP-
22 on the interaction with CaM. Binding of the non-myristoy-
lated (A) and myristoylated (B) recombinant CAP-23/NAP-22
to CaM was determined using CaM-agarose. The proteins
(Lane 1) were mixed with calmodulin-agarose in 50mM Tris-
HCl buffer (pH 6.8) containing 1mM CaCl2 and 0.2M NaCl.
After a short period of centrifugation in a tabletop centrifuge,
the supernatants were removed (Lane 2). The calmodulin-
agarose was washed twice with the same buffer. To the
sedimented gels, 50mM Tris-HCl buffer (pH 6.8) containing
0.2M NaCl and 5mM EGTA was added. After centrifugation,
the supernatants were removed (Lane 3), and the remaining
proteins were eluted with the sample buffer containing 1% SDS
(Lane 4). The fractions obtained were analyzed by SDS gel
electrophoresis.
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the introduction of an oppositely charged group into
the middle of the basic residues that were essential in
making the ionic contact with negatively charged
CaM.

Gel shift assay for stoichiometric analyses of the
interaction between CAP-43/NAP-22 and Ca2+/
CaM clearly indicated that two molecules of CAP-
43/NAP-22 bound to one molecule of CaM (Fig. 5).
Ca2+/CaM molecule adopted an ‘elongated’ struc-
ture that comprised two globular domains connected
by a highly flexible linker.24)–30) The binding of
Ca2+/CaM to the target peptide induced a compact
globular structure caused by the bending of the
domain linker.31)–33) The target peptides formed an ,-
helix in the complexes in a basic amphiphilic nature.
Besides the traditional mechanism for the target
recognition of CaM described above, other novel
mechanisms were identified. It was shown that a
single unique complex of Ca2+/CaM was formed with
two peptides that corresponded to the C-terminal
region of petunia glutamate decarboxylase (PGD).
The formation of a 1:2 protein–protein complex was
unusual; normally, Ca2+/CaM forms 1:1 complexes
with the majority of its target proteins.34) It has
previously been shown that a peptide corresponding
to the N-terminal portion of the CaM-binding do-

main in plasma membrane calcium pump bound only
to the C-terminal half of CaM, and that, in binding
to the peptide, CaM did not form any of the collapsed
structures observed in the previous studies.35)

SAXS can capture structural transformations of
proteins in solution in terms of changes in the radius
of gyration. The SAXS analysis indicated that the
binding of two mC/N9 molecules induced a drastic
structural change in Ca2+/CaM (Fig. 6). The radius
of gyration for the Ca2+/CaM-mC/N9 complex was

Fig. 4. Effects of myristoylation of NAP-22 N-terminal peptide
on the interaction with CaM (A), and the effect of phos-
phorylation by protein kinase C (B). Bindings of the non-
myristoylated (left panel of A), myristoylated (right panel of A),
and myristoylated-phosphorylated (B) NAP-22 N-terminal
peptide (Gly1-Lys9) to CaM were determined using CaM-
agarose as described in Fig. 3. The fractions obtained were
analyzed by SDS gel electrophoresis. The synthetic peptide was
phosphorylated by PKC purified from bovine brain as described
previously.14)

Fig. 5. Stoichiometric analysis using band shift assay of non-
denatured gel electrophoresis revealed the formation of Ca2+/
CaM-NAP22 complex with the molar ratio of 1:2. Lanes 1 and 6
are results of Ca2+/CaM and NAP22. Lanes 2, 3, 4 and 5 are
results of Ca2+/CaM-NAP22 mixture with the molar ratio of 2:1,
1:1, 1:2 and 1:3, respectively. Bands 1, 2, and 3 correspond to
Ca2+/CaM-NAP22 complex, NAP22 and Ca2+/CaM, respec-
tively. In the presence of the calcium ion (A), upon the formation
of the Ca2+/CaM-NAP22 complex, the isolated band of CaM
disappeared, and, when the molar ratio of Ca2+/CaM and
NAP22 was over 1:3, the isolated band of NAP22 appeared. In
the absence of calcium ion (B), no shift was observed.

Fig. 6. The radius of gyration as a function of the molar ratio of
mC/N9 to Ca2+/CaM at a CaM concentration of 9.0mg/mL.
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19.8 ± 0.3Å (Table 2). This value was significantly
smaller than that of Ca2+/CaM (21.9 ± 0.3Å), which
adopted a dumbbell structure and was 2–3Å larger
than those of the complexes of Ca2+/CaM with the
non-myristoylated target peptides of MLCK or CaM
kinase II, which adopted a compact globular struc-
ture.36) The pair distance distribution function had
no shoulder peak at around 40Å which was mainly
due to the dumbbell structure. These results sug-
gested that Ca2+/CaM interacted with N,-myristoy-
lated CAP-23/NAP-22 differently than it did with
other non-myristoylated target proteins.

We analyzed the interaction between mC/N9
and Ca2+/CaM using 15N labeled CaM and two-
dimensional 1H-15N HSQC NMR spectroscopy. Por-
tions of the NMR spectra for Ca2+/CaM in the
absence or presence of mC/N9 are shown in Fig. 7.
When mC/N9 was added, shifts of certain peaks were
observed in the 1H-15N HSQC NMR spectra of Ca2+/
CaM. Some drastic shifts of the peaks were also ob-
served by addition of 2 molar equivalents of mC/N9.

Unlike other CaM target proteins, CAP-23/
NAP-22 lacked any canonical CaM-binding motif

of a basic amphiphilic nature, suggesting that the
myristoyl moiety of the protein plays a direct role in
the protein–protein interaction.

In the case of M13 (the CaM-binding domain of
MLCK), the amphiphilic nature of the peptide
required for its binding to CaM was induced by the
,-helical conformation. The CaM-binding domain of
CAP-23/NAP-22 adopted a non-helical conforma-
tion in the Ca2+/CaM-complex.14) The N-terminal
domain of CAP-23/NAP-22 contained one hydro-
phobic residue (Leu4) in addition to five basic
residues (Lys3, Lys6, Lys7, Lys8 and Lys9). In this
domain, one hydrophobic acyl group (N-terminal
myristoyl moiety) was followed by one basic residue
(Lys3) and then one hydrophobic residue (Leu4).
This result resembled the canonical CaM-binding
motif, in which positively charged hydrophilic and
hydrophobic residues alternated.37),38) If the acyl
group had been substituted for a large hydrophobic
residue, such as Trp or Leu found in the canonical
CaM-binding motif, the overall structural character-
istics would have appeared to be very similar to each
other. The distance between the myristoyl moiety
and Leu4 was comparable to that between the two
critical hydrophobic residues found in M13 (Fig. 8;
shown in red). TFP and N-(6-aminohexyl)-5-chloro-
1-naphthalenesulfonamide (W-7) are small com-
pounds known to bind to CaM.39) Although the
chemical structure of TFP/W-7 clearly differed from
that of mC/N9 or M13, it also contained hydrophobic
groups (Fig. 8; shown in red) as well as positively
charged groups (Fig. 8; shown in blue), and these
groups were the cause of the amphiphilic nature of
the molecule. All these observations together empha-
sized the importance of the amphiphilic nature
required for the binding of CaM-binding molecules,
not only proteins but also bioactive small molecules,
to Ca2+/CaM.

Table 2. Radius of gyration Rg and maximum dimension dmax

for Ca2+/CaM and its complexes

Rg [Å] dmax [Å] reference

Ca2+/CaMa 21.9 ± 0.3 62 36

Ca2+/CaM - myristoylated

NAP22 peptidea
19.8 ± 0.3 50 36

Ca2+/CaMa 21.5 ± 0.3 69 61

Ca2+/CaM - M13a,b 16.4 ± 0.2 49 27

Ca2+/CaM - W-7a 17.6 ± 0.3 47 62
aValues at zero protein concentration obtained by SAXS
experiment.
bM13: a peptide based on the CaM-binding domain of MLCK.

Fig. 7. Titration of Ca2+/CaM with mC/N9 studied by CaM uniformly labeled with 15N and 1H-15N HSQC NMR spectroscopy. The
sample contained 0.5mM CaM, 120mM NaCl, 2.5mM CaCl2, and 50mM deuterated TrisHCl (pH 7.5) in 90% H2O and 10% D2O.
The resonance assignments were made with reference to Ikura et al.83) The three well isolated regions are indicated. The tentative
assignments (Lys21, Ile27, Ala57) are shown. The spectra of Ca2+/CaM in the presence of 0, 1, 2, 3, 4 and 5 molar equivalents of
mC/N9 are shown by the number, respectively.
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Physiological function of myristoylation

Myristome; comprehensive analysis of
N,myristoylated proteins. Using the complete
genome data, a comprehensive prediction of myri-
stoylated proteins was performed. A substrate of a
known complex of myristoylation enzyme was
replaced by peptides with the N-terminal sequence
of all the gene products anticipated from the genome
data, and the affinities were evaluated (http://
mendel.imp.ac.at/myristate/myrbase/).40) Then, the
prediction was experimentally verified by mass
spectrometry and a peptide array method. Peptides
corresponding to the N-terminal amino acid se-
quences of the candidates were arranged. Incorpo-

rations of the myristoyl group were detected by
radioisotope. Apart from that, the prediction was
also assayed by mass spectrometric analyses (http://
mendel.imp.ac.at/myristate/myrbase/MYRBASE_
additional_data_file_1.pdf). Surprisingly, the results
indicated that 0.5% of proteins in eukaryotic cells are
myristoylated.

In brain. The physiological function of CAP-
23/NAP-22 has yet to be determined, but its
involvement in synaptogenesis and neuronal plasti-
city has been suggested.41),42) CAP-23/NAP-22 is
related to other neuron-specific acidic proteins, such
as GAP-43 and MARCKS20),21),43) because it is also
a prominent substrate of PKC. MARCKS family
proteins have their own common properties; they
are natively unfolded proteins,44) heat stable, major
PKC substrates in neuronal cells, fatty-acylated, and
they interact with CaM.44) The phosphorylation site,
the myristoylation site, and the CaM binding site of
CAP-23/NAP-22 are located in the same region.
Phosphorylation of a single serine residue in the N-
terminal domain by PKC abolished the binding
of CAP-23/NAP-22 to Ca2+/CaM. These results
strongly suggested that crosstalks among several
distinct intracellular signal transduction systems in
brain are being carried out in the N-terminal region
of CAP-23/NAP-22. Besides CAP-23/NAP-22, myri-
stoylation of Cdk5 has been found to regulate the
localization in the cells,45) and many other myristoy-
lated proteins are thought to play key roles in brain
where rapid and flexible responses are required.

Oncogene products. Table 3 shows an align-
ment of the N-termini of some of the myristoylated
proteins. Lysine (K) is required to form the amphi-
philicity necessary for association with CaM. Serine
(S) can be used for a phosphorylation site to regulate
the proteins. Myristoylated proteins having both
lysine and serine in the N-terminal myristoylation
domains might be under the regulatory control
described above. The myristoylated N-terminal
region of Src kinase meets the requirements for
CaM binding, and it also has serine residues
phosphorylated by other protein kinases. In fact, it
has been suggested that Src kinase may be regulated
by the same mechanism found in the case of CAP-23/
NAP-22.46) To stably anchor src kinase on the
membranes, certain coupling factors are likely to be
needed in addition to myristoylation of the protein.

HIV Nef. HIV Nef (one of the human
immunodeficiency virus gene products) is another
example. Using an algorithm for the prediction of
myristoylation,40) it has been found that all of the

M13

TFP

Myristoylated N-terminal peptide
                     of CAP-23/NAP-22

Fig. 8. A comparison between the canonical CaM-binding
peptide, TFP, and the myristoylated mC/N9. A space-filling
model of the M13 peptide derived from skeletal muscle MLCK
in a helical conformation (top); the hydrophobic amino acid
residues that play important roles in the CaM interaction are
shown in red, and the positively charged amino acid residues are
shown in blue. TFP (middle); the hydrophobic aromatic group is
shown in red, and the positively charged group is shown in blue.
The myristoylated N-terminal peptide of CAP-23/NAP-22
(myr-GGKLSKKKK) in an elongated structure (bottom); the
myristoyl moiety and Leu4 are shown in red; the positively
charged amino acid residues are shown in blue, and one
phosphorylatable amino acid residue, Ser5, is shown in yellow.
All of these molecules include the basic amphiphilic natures
(basic group—blue, hydrophobic group—red) in them.
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Table 3. Amino acid sequence alignment of human myristoylated proteins predicted by the genome analysisa

Nameb Sequencec Ref.d

CAP-23/NAP-22 GGKLSKKKKG 14

tyrosine protein kinase transforming protein src (p60-Src) GSSKSKPKDP 63

proto-oncogene tyrosine protein kinase src (p60-Src) GSNKSKPKDA 63

HIV Nef GGKWSKSSVV 64

(2′-5′)oligoadenylate synthetase GNGESQLSSV 65

annexin XIII GNRHAKASSP 66

guanylate cyclase activating protein 1 GNVMEGKSVE 67

NADH-ubiquinone oxidoreductase B18 subunit GAHLVRRYLG *

NADH-cytochrome b5 reductase GAQLSTLGHM 68

endothelial nitric oxide synthase (eNOS) GNLKSVAQEP 69

acetylcholine receptor-associated 43kD protein GQDQTKQQIE 70

T-lymphoma invasion and metastasis inducing protein 1 GNAESQHVEH *

visinin-like protein 1 GKQNSKLAPE 71

recoverin GNSKSGALSK 72

calcineurin B GNEASYPLEM 73

neuron-specific calcium-binding protein hippocalcin GKQNSKLRPE 74

neurocalcin d GKQNSKLRPE 75

calcium-binding protein P22/calcineurin homologous protein GSRASTLLRD *

a subunit of cAMP-dependent protein kinase GNAAAAKKGS 1

b subunit of cAMP-dependent protein kinase GNAATAKKGS 1

g subunit of cAMP-dependent protein kinase GNAPAKKDTE 1

b lymphocyte tyrosine protein kinase GLVSSKKPDK 76

proto-oncogene tyrosine protein kinase Fyn (p59-Fyn) GCVQCKDKEA 77

tyrosine protein kinase Hck (hemopoietic cell kinase) GGRSSCEDPG 78

proto-oncogene tyrosine protein kinase Lck GCGCSSHPED 79

tyrosine protein kinase Lyn GCIKSKGKDS *

proto-oncogene tyrosine protein kinase Yes (p61-Yes) GCIKSKENKS 76

ADP-ribosylation factor 1 GNIFANLFKG 80

ADP-ribosylation factor 3 GNIFGNLLKS 80

ADP-ribosylation factor 4 GLTISSLFSR 80

ADP-ribosylation factor 5 GLTVSALFSR 80

ADP-ribosylation factor 6 GKVLSKIFGN 80

HIV Gag GARASVLSGG 81

guanine nucleotide-binding protein Go, , subunit 1 GCTLSAEERA 82

guanine nucleotide-binding protein Go, , subunit 2 GCTLSAEERA 82

guanine nucleotide-binding protein Gi, , subunit 1 GCTLSAEDKA 82

guanine nucleotide-binding protein Gi, , subunit 2 GCTVSAEDKA 82

guanine nucleotide-binding protein Gt, , subunit 1 GAGASAEEKH 82

guanine nucleotide-binding protein Gt, , subunit 2 GSGASAEDKE 82

Residues required for the CaM bindinge G-KLS- - - - -
aWhen the modification has been identified in the protein from other species, the references are shown.
bNames of myristoylated proteins including the abbreviations. Refer to the superscripts for the formal name (see below).
cN-terminal ten-residue sequences.
dReferences for the myristoylation. Asterisks (*) show that the myristoylation of the protein has not yet been directly identified, but
the possibility of its eventual identification is suggested from the sequence similarity.
eResidues in CAP-23/NAP-22 required for the CaM binding (ref. 14) are shown with the phosphorylatable serin residue in the domain.
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several hundred Nef isoforms are perhaps myristoy-
lated. This result suggests that Nef myristoylation
is necessary for its function. The myristoylated N-
terminal region of Nef also meets the requirements for
CaM binding, and it also has serine residues phos-
phorylated by other protein kinases. Therefore, Nef is
considered to use the same mechanism to intervene in
the signaling systems of the host cells.15),47)

Signal transduction between membranes
and cytoplasmic fractions through

myristoylated proteins

Functional implication of myristoyl moiety.
Because of the reversibility of these transitions, they
are considered to play a role in communications
between membranes and cytoplasmic fractions.
Recently, some reports have shown that myristoy-
lated proteins exist in membrane micro domains,
called rafts,48) and they are thought to function for
processing the signals rapidly and flexibly. Therefore,
myristoylated proteins may be designed as multi-
functional molecules. Figure 9 shows a summary of
reversible translocations of myristoylated proteins
between membranes and cytoplasmic fractions under
the regulation of signaling system crosstalks. Phos-
phorylation of myristoylated proteins abolishes their
interactions with CaM, and it might also reduce their

affinities to membranes because of the introduction of
negative charges. Their interactions with CaM might
also inhibit their localization to membranes because
CaM which binds directly to the myristoyl moiety is
essential for the membrane binding by serving as a
membrane anchor. The state of membranes may also
have effects on their interactions. Some myristoy-
lated proteins have been reported to localize tran-
siently to membrane micro-domains according to the
state of cells.49)

The involvement of protein myristoylation in
protein–protein interactions has been implied in
various studies,50)–52) but it has never been clearly
demonstrated. To the best of our knowledge, our
result is the first report directly demonstrating the
involvement of myristoylation in protein–protein
interactions. Protein myristoylation has been impli-
cated in the regulation of various signal transduction
proteins,11),53) and in addition, there are many other
potential myristoylated proteins whose myristoyla-
tion can be predicted from their amino acid
sequences. Among these proteins, some have func-
tionally important features besides myristoylation,
such as the possession of basic residues (lysine), and
the target residue of phosphorylation by protein
kinase C (serine) (Table 3). Therefore, there might
be a strong possibility that myristoylation-dependent

Fig. 9. Scheme of reversible translocation of myristoylated proteins between the membrane and cytoplasmic fractions.
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protein–protein interactions play important roles in
at least some of these cases.36)

Subcellular localization regulated by myris-
toylated domains. A simulation of the membrane

binding of a myristoylated domain shows that not
only the myristoyl group, but also the N-terminal
region, might contribute to the membrane binding.12)

Myristoylated proteins have their own myristoyl
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Amino acid sequence pI Hydrophobicity profile

Fig. 10. pI values and hydrophobicity profiles of the N-terminal amino acid sequences of some members of the predicted myristoylated
protein database. pI values were calculated using Protein Identification and Analysis Tools on the ExPASy Server.84) Hydrophobicity
profiles were calculated by the Kyte–Doolittle method85) using the Molecular Toolkit of Colorado State University. The attached
numbers of each panel correspond to numbers in the list of the predicted myristoylated proteins shown below.
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groups in common. However, their N-terminal amino
acid sequences are considerably divergent. The amino
acid sequences of the first 10 members in the
database of predicted myristoylated proteins exhibit
very different pI values and hydrophobicity profiles,
as shown in Fig. 10. It can be speculated that a
variety of the properties in the N-terminal regions of
myristoylated proteins could result from differences
in their membrane targeting regions. Both the N-
terminal regions of the myristoylated proteins and
the contents of their target membranes may exert
great influence on the affinities between the proteins
and the membranes. In fact, different myristoylated
proteins have been isolated from different membrane
fractions.54) Furthermore, several groups have re-
ported that different modifications of the amino acid
sequences at myristoylated domains altered their
localizations in cells.55)–57)

Future perspectives

New techniques for analyses of delicate
interactions. The biological significances of
myristoylated proteins could be elucidated by ob-
serving the behavior of each myristoylated protein in
living cells. One particular molecule tracking tech-
nique seems to be a powerful tool for this purpose,
but the target molecule is required to be labeled with
a fluorescent probe for this analysis. However, the
anchoring affinity of myristoyl proteins to mem-
branes is generally not so strong, and the proteins of
more than 20 kDa can remain at membrane fractions
unstably only by the myristoyl group,58) and the
heavy probes generally used, like those for green
fluorescent protein (GFP), are predicted to change
the dynamics of the target proteins and result in
some artifacts. Thus, a new methodology for site-
selective post-translational modification of proteins
has been developed.59) Using this technique, any
probe could be introduced to any site of the protein.

Also, in order to observe the motion of target
proteins in living cells, an in-cell NMR technique has
been developed.60) Combination of existing method-
ologies and these new technologies would be indis-
pensable to elucidate the regulatory mechanisms of
delicate and complicated signal processing involving
myristoylated proteins.

New insight into rapid and flexible signal
processing on the cell surface. As is shown herein,
a wide variety of myristoylated proteins are sug-
gested to be involved in various intracellular signal-
ing pathways between membranes and cytoplasm
fractions. Although these myristoylated proteins are

produced by the same mechanism, their biological
significances must be different with one another.
Considering the proteins whose functions are regu-
lated by myristoylation as cross-talk points in the
intracellular signal transduction systems, the known
signaling pathways could be linked to one another.
Accordingly, a novel map of their intracellular signal
transduction network could be constructed.
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