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Phase transition in spin systems with various types of fluctuations

By Seiji MIYASHITA*1,*2,†

(Communicated by Jun KONDO, M.J.A.)

Abstract: Various types ordering processes in systems with large fluctuation are overviewed.
Generally, the so-called order–disorder phase transition takes place in competition between the
interaction causing the system be ordered and the entropy causing a random disturbance. Nature of
the phase transition strongly depends on the type of fluctuation which is determined by the
structure of the order parameter of the system. As to the critical property of phase transitions, the
concept “universality of the critical phenomena” is well established. However, we still find variety of
features of ordering processes. In this article, we study effects of various mechanisms which bring
large fluctuation in the system, e.g., continuous symmetry of the spin in low dimensions,
contradictions among interactions (frustration), randomness of the lattice, quantum fluctuations,
and a long range interaction in off-lattice systems.

Keywords: phase transition, critical phenomena, frustration, quantum effect, randomness,
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1. Introduction

The phase transition is one of the most
significant phenomena in the nature.1) The most
familiar phase transition is the boiling phenomenon
of the water. The state of the water changes at the
boiling temperature (’100°C), i.e., from the liquid to
the gas. The microscopic description of the system
does not change at all at this point. Namely, the
interaction among molecules is given by a normal
non-singular form which does not depend on the
temperature. However, the macroscopic property
shows the singular dependence on the temperature.
This dependence was first explained by the van der
Waals equation of state. This equation takes the
interaction between molecules into the equation of
state of the ideal gas (Boyle–Charles law). Thus, it
became clear that the interaction is important for
the phase transition. But it was still mystery that
the singular behavior of phase transition can be
explained by the statistical mechanics. In the canoni-

cal ensemble, all the thermodynamic properties are
derived from the partition function which consists
of analytic functions of the temperature, i.e.
e�Ei=kBT , where Ei is an energy of a state i, T is
the temperature, and kB is the Boltzmann con-
stant.

This singular property was one of the main
topics of the statistical physics in the early twenty
century.2) L. Onsager finally succeeded to obtain the
exact form of the free energy in the thermodynamic
limit, and showed a divergence of the specific heat.3)

This work first demonstrated the intrinsic difference
between the so-called microscopic state and the
macroscopic state.

Since then, natures of phase transitions have
been extensively studied, and various properties have
been clarified. One of the most significant properties
is the universality of the criticality. This indicates
that the critical property of systems only depends on
the so-called relevant characteristics, such as the
spatial dimensionality of the system, symmetry of the
order parameter, and the range of interaction. The
concept of the universality has been supported by the
idea of the renormalization group.4) However, in the
two dimensions, it has turned out that infinite
different types of critical properties exist in the
studies on the exactly solvable models,5),6) and also
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on the conformal field theory.7) There the concept of
“relevance” of quantities became rather unclear.

In three dimensions, so far we knew little on the
variety of the criticality. At present, the relevant
quantities in three dimensions are only the dimen-
sionality of spin and the range of interaction. Most
models which show the second-order phase transi-
tions in the two dimensions with different critical
exponents exhibit the first order phase transition. For
example, the case of the three-state Potts model in
three dimension was very marginal,8),9) but it has
turned out to have a weak first-order transition.10)

Thus, the approach to classify the second order phase
transition is not very powerful in three dimensions.
There may be various unknown types of ordered
states in three dimensions, and a new concept for
classification would be necessary.

The phase transition is understood as competi-
tion between the interaction which causes the order
and the thermal fluctuation (the entropy) which
causes random configurations. Beside this fundamen-
tal mechanism of phase transition, ordering processes
show various aspects depending on the structure of
the order parameter of the system. In this paper,
we study several examples of ordering processes in
systems with some mechanisms for large fluctuations.

There are various types of models, such as spin
models with Ising, XY and Heisenberg spins, Potts
model, and the clock model, etc. They are expressed
in the following form

H ¼ �
X
hiji

JijXiXj �H
X0

Xi; ½1�

where Xi represents a local quantities such as the spin
at the position of i, and H is an external field
conjugate to the order parameter. Here hiji denotes
the interacting pairs and Jij is the coupling constant
for the pair, and

P0 denotes the sum for the order
parameter M ¼P0 Xi. We assume that the local
quantities are on lattice points which are fixed except
in the last section.

Critical property is studied by investigating the
order parameter

hMi ¼ TrMe��H

Tre��H ; ½2�

and its fluctuation

hM2i � hMi2 ¼ TrM2e��H

Tre��H � hMi2; ½3�

which corresponds to the response to the conjugate
field H, i.e., � ¼ dM=dH. Type of the critical

property is characterized by the singularity at a
critical point TC. For example, the susceptibility
diverges as

� ¼ hM2i � hMi2
kBT

/ jT � TCj��; ½4�

and the spontaneous order parameter mS appears as

mS ¼ lim
H!0

lim
N!1

hMi
N

/ jTC � T j�; ½5�

which represents the symmetry breaking of the
system. The specific heat C shows a singular
dependence as

C ¼ hH2i � hHi2
kBT 2

/ jT � TCj��: ½6�

Here, the exponents ,, - and . are called “critical
exponents”.

As an example, we show the critical properties of
the two-dimensional Ising model on the square lattice
which is the most well-known and a prototype system
for the phase transition:

HIsing ¼ �J
X
hiji

�i�j �H
X
i

�i; ½7�

where < = ±1 and hiji denotes all the nearest
neighbor pairs on the lattice. In Fig. 1, we depict
the specific heat obtained by Onsager3) by the thin
curves. There, we see the divergence at the critical
point kBTC=J ¼ ð2= lnð1þ ffiffiffi

2
p Þ ’ 2:269 � � � .

In the figure, we also show the temperature
dependence of the spontaneous magnetization ob-
tained by C. N. Yang11)
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Fig. 1. Temperature dependences of the specific heat (thin line)
and of the spontaneous magnetization of the ferromagnetic two-
dimensional Ising model [7] with H = 0.
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ms ¼ 1� 1

sinh4 2K

� �1=8

: ½8�

The free energy of the Ising model has been obtained
by various methods,3),5),12)–14) and a new field of the
so-called “exactly solvable model” has been devel-
oped.15)

In Fig. 2, we plot a typical spin configuration
near the critical temperature where we find large
domains. The linear dimension of the domain
corresponds to the correlation length 9

hSiSji � 1

rd�2þ�
e�rij=� for large rij; ½9�

where rij is the distance between the sites i and j, and
2 is the exponent so-called anomalous dimension. The
divergence of the correlation length is expressed as

� � jT � TCj�� ½10�
with 8 = 1. It is known that the exponent 2 is 1/4 for
the present model. At the critical point, fluctuation of
the order parameter becomes large which results in
the divergence of @. Although the susceptibility has
not yet been obtained analytically, it has been
established that it diverges with the exponent . =
7/4 of Eq. [4]. This divergence of @ corresponds to
the correlation length 9. The exponent 8 is related to
. and 2 as

� ¼ ð2� �Þ�: ½11�
This is an example of the scaling relations among the
critical exponents.16)

For the Ising ferromagnet, the ordered state is a
simple ferromagnetic state and ordering process is

rather straightforward. However, when the system
has additional sources of fluctuation, the phase
transition shows various interesting aspects of the
ordering. In this paper, we study characteristics of
phase transitions of systems in which the fluctuation
is enhanced by various reasons, such as the contin-
uous symmetry of the order parameter which causes
the so-called infrared divergence of fluctuation in low
dimensions (d = 1 and 2), contradictions among the
interactions (frustration), randomness of the lattice,
and quantum fluctuation. We also study the effect of
the long range interaction induced by an elastic
interaction in off-lattice systems.

2. XY model (a continuous spin symmetry)

In the Ising model, the boundary of the two
phases is given by a domain wall. On the other hand,
when the spin has a continuous symmetry, e.g., the
XY model with Si ¼ ðcos 	i; sin 	iÞ:

HXY ¼ �J
X
hiji

cosð	i � 	jÞ; ½12�

the direction of the spin can change smoothly,
and the domain wall is not formed. Thus, the
fluctuation easily occurs, and it causes the so-called
infrared divergence of the fluctuation, and the long
range order can not appear in two dimensions.17)

Although the long range order does not exist in
the two-dimensional XY model, it has been known
that the system exhibits a peculiar critical phenom-
enon which is called “Kosterlitz–Thouless transi-
tion”.18)

At low temperatures, this system can be
approximated by a harmonic system, H ’
J=2

P
hijið	i � 	jÞ2, where the periodicity of the angle

3 is not relevant. The spin correlation function decays
by a power law19)

hSi � Sji � r��
ij ; ½13�

with a temperature dependent exponent 2 = kBT/4J
in the harmonic approximation. In contrast, the
correlation function decays exponentially at high
temperatures, where the periodicity of the potential
cos(3i − 3j) is relevant. This difference is explained
by using the picture of vortex-pair association. The
vortex is characterized by the vortex number n
defined by I

d	 ¼ 2n
: ½14�

Because n can be any integer, this type of vortex is
called Z vortex. But vortices with large n cause high

Fig. 2. A snapshot of equilibrium spin configuration obtained by
a Monte Carlo method near the critical point T = 2.3/J and
H = 0 (cf. TC=J � 2:269 � � �). The solid and open circles denote
<i = 1 and <i =−1, respectively.
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energies, and thus the vortices with n = ±1 are
important. We call them ‘±’ vortex, respectively.
The vortex represents a topological defect in config-
urations of the system with O(1) symmetry repre-
senting the periodicity of the angle.

Appearance of single vortex indicates the
relevance of the periodicity, and thus it is a symbol
of the high temperature phase. On the other hand, in
the low temperature phase the interaction is so
strong that configurations reflecting the periodicity
of the angle cannot appear. Thus, at low temper-
atures, the periodicity of the angle is irrelevant. This
fact is expressed by the absence of single vortex,
which means essentially no vortex. However, at finite
temperatures, thermal fluctuation may still cause the
appearance of them in a form of pair of ‘±’ vortices
which is localized in the space. This change from the
free single vortices to the bounded pair vortices is
called “vortex association” at the Kosterlitz–Thouless
transition. In equilibrium configurations of the XY
model, it is hard to identify vortices clearly. At high
temperatures, configurations are too much disturbed
to identify the vortices, and at low temperatures,
the probability for well-recognize vortex pair is very
low.20) In Fig. 3, we depict a typical configuration
with vortices, where the ‘±’ vortices are shown by
open and solid circles, respectively. It should be
noted that this is a transient configuration from a
random configuration to an aligned one at a low
temperature.

The model [12] is transformed to the so-called
solid-on-solid (SOS) model by the dual transforma-
tion.21)–23) Using the following identity relation

Z ¼ Tre
K
P

hiji cosð	i�	jÞ

¼
Z 2


0

d	i
Y
hiji

X1
sij¼�1

eisijð	i�	jÞ
Z 2


0

d�

2

e�isij�þK cosð�Þ;

½15�
and integrating over 3i, the partition function is given
by

Z ¼
Y
hiji

X1
sij¼�1

Y
k

�P
m: around k

skm;0

 !
IsijðKÞ; ½16�

where

IsðKÞ ¼
Z 2


0

d�

2

e�is�þK cosð�Þ ’ 1ffiffiffiffiffiffiffiffiffiffi

2
K
p e�s2=2K ½17�

for large K. If we introduce the dual variables

skm ¼ hk � hm; ½18�

then the condition
P

m: around k skm ¼ 0 is auto-
matically satisfied. Here, we have to be careful
to assign the suffix k and m. Thus, the partition
function is expressed by the integer variable
{hi}

Z ¼
X1

hi¼�1

Y
hiji

Ihi�hj
ðKÞ

’ 1

2
K

� �zN=2X1
hi¼1

e
� 1

2K

P
hijiðhi�hjÞ2 ; ½19�

where z is the number of the nearest neighbor
sites. This partition function can be interpreted
as that a system of the integer variable {hi}:

HSOS ¼ 1

2

X
hiji

Jðhi � hjÞ2 ½20�

at the temperature J/kT. Regarding hi as the
height of solid, this model is called the solid-on-
solid (SOS) model. It is used to study the
crystal growth where hi denotes the height of the
surface at the position i.24) Thus, we find that
the planar model and the SOS model are in the
dual relation.23) The SOS model is used to study
phase transitions of the surface structures such
as the roughening transition25) and facet tran-
sition.26)

Instead of using the planar model, if we use the
Villain model HV

21)

e��HV ¼
X1

m¼�1
e

1
2

P
hiji Kð	i�	j�2m
Þ2

; ½21�

we have exactly

Fig. 3. A vortex configuration of the two-dimensional XY model
[12] in a transient process of ordering. The open circles denote
the ‘+’ vortices and the closed circles ‘−’ vortices.
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Z ¼
X1

hi¼�1
e
� 1

2K

P
hijiðhi�hjÞ2 : ½22�

The model is further transformed by using an
identity expression (Poisson sum):

Z ¼
X1

hi¼�1

Z 1

�1
d�ie

� 1
2K

P
hjkið�j��kÞ2þ

P
j
2
ihj�j : ½23�

If we perform the Gauss integration over ?, we find
that only the case of

P
j hj ¼ 0 is relevant, and there

the partition function has the form

Z ¼ Z0

X
hi

e
�a
P

i
h2
i�2
K

P
i6¼j

hihj lnðrijÞ; ½24�

where Z0 and a are constants independent of {hi}.
This model is a neutral two-dimensional Coulomb
system of particles with the charges {hi}.27)

3. Frustration I: Ising spin systems

In the models so far studied, the interaction
tends to cause a perfect alignment of the spins. So, all
the interactions work cooperatively, and how the
system is ordered is well defined. However, if there
are contradictions among the interactions, the order-
ing process becomes not trivial, and various interest-
ing ordering phenomena occur. Although phase
transitions in the frustrated or competing interac-
tions have been studied for a long time, the concept
of frustration was introduced by Toulouse28) in the
study of the spin glass.

In this section, we study the case of frustrated
Ising spin systems in regular lattices.29) As a typical
example, let us consider spins interacting antiferro-
magnetically on a triangle lattice (Fig. 4(a)). On the
triangle, many degenerate ground states exist, that
is, six states give the ground state for the anti-
ferromagnetic case while two states (all up or down)
for the ferromagnetic case. If we consider a larger
lattice, number of the ground states in the anti-
ferromagnetic case increases while that of the
ferromagnetic model remains two. It has been known
by exact calculations30) that this antiferromagnetic
Ising model does not have a critical point at finite
temperatures, and the ground state has a macro-
scopic degeneracy W, and thus the system has
nonzero entropy at T = 0:

SðT ¼ 0Þ ¼ kB lnW ’ 0:338NkB; ½25�
where N is the number of the lattice sites. Similar
properties have been obtained in the square version
of the fully frustrated model (Villain model31)

(Fig. 4(b))). It is known that the spin correlation

function of this type of models decays in a power
law32),33)

h�i�ji � r
�1=2
ij ; ½26�

which means that the critical temperature is 0 in
these models.

In the followings, we study phase transitions in
this type of highly frustrated systems, for which some
additional interaction is necessary to extract some
ordered configurations from the highly degenerate
configurations.

3.1. Phase transitions induced by next-near-
est neighbor interactions in the fully-frustrated
Ising model. Although no phase transition takes
place in the fully frustrated Ising models, successive
phase transitions were observed in experiments
(CsCoCl3).34) In order to explain these phase
transitions, Mekata introduced next-nearest neighbor
(nnn) interactions (Fig. 4(c)), and found successive
phase transitions by a mean-field theory. In partic-
ular, he found a phase in which a part of spins remain
disorder due to the frustration and he called this
phase “partially disordered (PD) phase”. (Fig. 5(a)).
At a lower temperature, the remaining spins order
and form a kind of ferrimagnetic phase. Because of
the new feature of the successive phase transitions,
detailed investigations on this type of models have
been done.

First, models in two dimensions were studied.
The present author proposed an exactly solvable
model with a next nearest neighbor (nnn) interaction

(a) (b)

(c) (d)

JAF

JF

2J

Fig. 4. Fully frustrated lattices. The bold lines denote antiferro-
magnetic bonds and the thin lines ferromagnetic bonds. (a)
Antiferromagnetic triangular lattice. (b) The Villain lattice
(Fully frustrated square lattice. (c) The antiferromagnetic model
on the triangular lattice with a next nearest neighbor interaction
(dotted line). (d) The Villain model with next nearest neighbor
interactions (dotted lines).
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in the fully frustrated square lattice (Fig. 4(d)). It
was pointed out that the model without the nnn
interaction (the original Villain model) is trans-
formed into an exactly solvable symmetric eight
vertex model,5),33) and it was shown that the spin
correlation function in the ground state shows the
power law decay [26]. Following the above mentioned
Mekata’s idea, we expect that, by setting the nnn
interaction, the sublattice order is enhanced and the
model exhibits a phase transition. The model with
the nnn interaction only on one of the sublattices can
still be transformed into the eight vertex model as
well as the Villain model. It was shown that the
model with the nnn interaction has a finite critical
temperature as a function the strength (say J2) of the
nnn interaction.35) The critical temperature decreases
with J2 and vanishes at J2 = 0. Moreover, it was
shown that the critical exponent of the specific heat ,
(Eq. [6]) of this system changes continuously with J2
reflecting the peculiar property of the eight vertex
model.5) If the frustration is strong, i.e., for small J2,
the critical exponent , has a negative value with a
large absolute value, which means a smooth change
of the specific heat although it is still singular. This
feature is natural and suggestive for phase transitions
of frustrated models. But the feature of phase
transition is rather different from that of the original
Mekata problem.

More direct studies of the antiferromagnet on
the triangular lattice of the Ising spin (AFTI) with
nnn interactions were performed. Reflecting the
symmetry of the ground state, the model was mapped
to the six-state clock model by making use of the
relation depicted in Fig. 5(b).36)–39) In two dimen-
sions, the six-state clock model,

H ¼ �J cosð	i � 	jÞ; 	i ¼ 


3
n; n ¼ 0; . . . 5; ½27�

is known to have two KT-type phase transitions
which are dual to each other, although the systems
with n ¯ 4 have a unique self-dual transition. The
intermediate temperature phase is a massless phase
in which the correlation function decays in a power
law.40) Thus, one may consider that the PD phase can
be understood in an analogy to this intermediate KT
phase.

To study properties in three dimensions, the
standard three dimensional six-state clock model [27]
was also studied. It turned out that the nature of
fluctuation is different from that of the two dimen-
sions. It was shown that the model has no inter-
mediate temperature phase though it shows a large
intermediate crossover temperature region.41),42)

Thus, the PD phase was regarded as the intermediate
temperature region with a large fluctuation.

But, finally it was discovered that the generalized
six-state clock model has a new type of ordered struc-
ture. Although the antiferromagnets on the triangular
lattice (AFT) has the six-fold symmetry (Fig. 5(b)),
the structure of energy levels for the states is not
necessarily given by the standard six-state clock
model [27], but it may have a generalized form

H ¼ "1�ni;nj�1 þ "2�ni;nj�2 þ "3�ni;nj�3: ½28�
In the case C1 = C2 = C3 > 0, the model corresponds to
the six-state Potts model, which exhibits a first-order
phase transition.9)

It was discovered that, in the case "1 � "2 ’ "3,
the model has a new type of intermediate-temper-
ature phase in which two neighboring states mix
microscopically.43) In Fig. 6, we depict a snap shot
of the intermediate phase. There we set different
boundary conditions in the left and right sides. At
the left boundary, the states are restricted to the
states 1 and 2 (left) and at the right the states 2 and 3
(right). There are a mixed phase of the states 1 and 2
in the left and that of 2 and 3 in the right. Between
them, we find a sharp domain boundary which
indicates the stability of the mixed states.

This state really possesses the property of the
PD phase proposed by Mekata,44) because, if we
average two neighboring structures in Fig. 5, we have
a disordered site in one of the three sites. Thus,
finally it was proved that there exists an ordered
state corresponding to the Mekata’s PD phase in
three dimensions. This type of phase with mixed
states is not known so far, and gives a new type of
ordered state.

(1)

(2)

(3)

(4)

(5)

(6)

(a) (b)

Fig. 5. (a) The partially disordered (PD) state in the antiferro-
magnetic Ising model with a next nearest neighbor interaction
(Mekata model). The circles denote the disordered sites. (b)
Correspondence between the six-fold ground state of the Mekata
model and the six-state clock model.
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In three dimensions, it has been pointed out a
rich structure of the ordered states, so-called “devil’s
stair case” or “devil’s flower”, appears in the
ferromagnetic Ising model with a nearest neighbor
interaction in one direction (ANNNI model).45) These
observations indicate that various unknown rich
structures of ordered states exist in higher dimensions
for the future studies.

3.2. Reentrant phase transition. Another
interesting property of the frustrated systems is the
non-monotonic ordering process due to the peculiar
distribution of degeneracy. The non-monotonicity is
understood by the idea of the decorated bond.46),47) A
typical example of the decorated bond is depicted in
Fig. 7. There, two spins, <1 and <2, which we call the
system spin, are connected by a direct bond (J0) and
two paths with the spins si (i = 1 and 2) which we
call the decoration spin. The Hamiltonian of the
decorated bond is given by

Hdecoratedbond ¼ J0�1�2 � J1ð�1 þ �2Þðs1 þ s2Þ: ½29�
The effective interaction K(Teff) between the system
spins is given by

Z0e
�KðT Þeff�1�2 ¼ Trs1;s2e

�Hdecoratedbond=kBT ; ½30�
where Z0 is a factor independent of <i. At high
temperatures, because of the entropy effect, the
contribution to the effective interaction through the
decoration spins is weak (i.e., tanh�1ðtanh2 �J1Þ /

ð�J1Þ2). On the other hand, at low temperatures, the
effective coupling constant is approximately given by
the sum of interactions of all the three paths, i.e.,
K(T) ’ (2J1 − J0)/kBT.

Here, we consider a competing case, e.g., J0 = 2J
and J1 = 1.5J with a unit of energy J. Because the
direct path is antiferromagnetic (J0 > 0), the effective
interaction is antiferromagnetic at high temperatures
K(T) < 0. At low temperatures, it is ferromagnetic
because 2J1 > J0. In Fig. 7, temperature dependence
of the correlation function C12 ¼ h�1�2i ¼
tanhKeffðT Þ is plotted. The effective coupling
disappears at the temperature T0 at which
tanhðJ0=2kBT0Þ ¼ tanh2ðJ1=kBT0Þ.

We can also provide more complicated types of
reentrant phase transitions in exactly solvable two-
dimensional Ising models.48) This reentrant behavior
can give a mechanism of temperature dependent
configuration of ordered states in random systems,
where interesting phenomena such as memory and
rejuvenation take place.49) It is also known that this
type of decoration causes a kind of screening effect on
the spin state at each site and stabilize it, and thus
the spin dynamics becomes very slow.50)

4. Frustration II: Continuous spin systems

4.1. XY model on the triangular lattice. So
far we studied the frustrated Ising model where the
frustration causes degeneracy of the ground state.
However, in the case of continuous spin systems, the
degeneracy of the ground state can be resolved in a
non-collinear spin structure. The continuous degree

Fig. 6. Domain structure of mixed states of the generalized six-
state clock model [28] with C1 = 0.1J and C2 = C3 = J. The six
states (n = 1, ³ 6) are plotted by red, yellow, green, blue, gray,
and black squares, respectively. The left part is a mixed phase of
n = 1 and 2, and the right part is a mixed phase of n = 2 and 3.
The lattice is a cubic lattice with L = 100 and T = 0.4J. An
intersection of the lattice is depicted.

0
0

1

C12

T/J

σ1 σ2

s1

s2

J0

J1

tanh(J0/2kBT)=tanh2(J1/kBT))

2 4

Fig. 7. Temperature dependence of the correlation function
h�1�2i ¼ tanhðKeffðT ÞÞ of the decorated bond [29]. Inset shows
the bond structure, where the circles denote the system spins <1

and <2, and the squares the decoration spins s1 and s2.
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of freedom allows the system to have a spiral
structure.51),52) The structure of the spiral state is
obtained by the Fourier transformation of the
interaction

H ¼
X
ðijÞ

JijSi � Sj ¼
X
k

JðkÞSk � S�k: ½31�

The minimum point of J(k) gives the period of the
helical structure. For an antiferromagnet on the
triangular lattice, the unit cell consists of three spins
(three sublattices), and J(k) is given by

JðkÞ ¼ J

�
cosðkxÞ þ cos

kx
2

þ
ffiffiffi
3

p
ky
2

� �

þ cos
kx
2

�
ffiffiffi
3

p
ky
2

� ��
; ½32�

and it has minima at two points ðkx; kyÞ ¼ �ð2
3 ; 2

3
ffiffi
3

p Þ
which correspond to the degree of the chirality (see
Eq. [33]), while it has a maximum at ðkx; kyÞ ¼ ð0; 0Þ
which corresponds to the ground state in the
ferromagnetic case.

The ground state of the antiferromagnetic XY
model on a triangle is given by the configurations
depicted in Fig. 8. The ground state has no more
macroscopic degeneracy as the case of Ising model.
There remains a non-trivial two-fold degeneracy as
depicted in Figs. 8(a) and (b) which are called ±120°
structure, respectively.53),54) Thus, the symmetry of
the ground state is given by Z2 × S1, i.e., the two-fold
degeneracy and the trivial degeneracy of the rotation
around the z-axis. Amplitude of the local ±120°
structure is described by the quantity “chirality”54)

 ¼ 2

3
ffiffiffi
3

p ðSi � Sj þ Sj � Sk þ Sk � SiÞ: ½33�

This is a scalar variable for the XY spin system, and
it causes an Ising-like critical property. The rota-
tional degree of freedom gives a Kosterlitz–Thouless
transition of the spin order. Therefore, we expect two
phase transitions in this system.54) There were long
discussions on the problem which phase transition
takes place at higher temperature. Nowadays, it is
almost settled that the chirality orders first (at a
higher temperature) as discussed in the first paper of
this problem.55)

4.2. Heisenberg model on the triangular
lattice. In the isotropic Heisenberg spin model,
the symmetry of the ground state configuration is
more complicated. The ground state is given by a
three-dimensional chiral vector and this structure is
characterized by the three-dimensional rotation

group SO(3) or the projective space P3.56) This
structure has a new type of vortex (Z2 vortex) as
the point defect (the homotopy group classification
:1(P3) = Z2

57)). The phase transition of this system
was discussed by using the Wilson loop in an analogy
of the quark-confinement problem in the lattice
gauge theory.58)

In three dimensions, the symmetry P3 is
expected to give a new universality class (chiral
universality),59) and various new aspects were
pointed out. However, it turned out that the system
exhibits a first-order phase transition in three
dimensions at least for the XY and Heisenberg
models.60) It is still a challenging topic to look for a
phase transition of the chiral universality class in
some parameter regions of three dimensional models.

Next, we discuss anisotropic Heisenberg models
on the triangular lattice

H ¼ J
X
hiji

ðSx
i S

x
j þ Sy

i S
y
j þ ASz

i S
z
j Þ �H

X
i

Sz
i ; ½34�

where A denotes the anisotropy. In the ferromagnetic
model, even a weak Ising anisotropy will bring the
system to be ordered in the easy axis (along the z

+
(a)

(c)

(b)

Fig. 8. Ground state spin configurations of antiferromagnetic
XY model (a) +120° structure, and (b) −120° structure (c) A
domain structure of the chiralities. Open circles denote triangles
with ‘−’ chirality, and open circles with ‘+’ denote those of ‘+’

chirality (Eq. [33]). The radius of the circle is proportional to the
amplitude of the chirality. This is a snap shot during a relaxation
from random configuration to a low temperature (T = 0.1J).
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axis), and the system shows a phase transition of the
Ising universality with the order parameter of the Z2

symmetry. However, because of the frustration, the
order parameter has a distorted 120° structure, and
nature of the phase transition is different from the
simple Ising case.

There are several locally stable structures of the
spins on a triangle in the field as depicted in Fig. 9.
The stable configurations in the ground state are
obtained by

cos 	1ðsin 	2 þ sin 	3Þ
¼ A sin 	1 cos 	2 þ cos 	3 � H

3J

� �
;

cos 	2ðsin 	3 þ sin 	1Þ
¼ A sin 	2 cos 	3 þ cos 	1 � H

3J

� �
;

cos 	3ðsin 	1 þ sin 	2Þ
¼ A sin 	3 cos 	1 þ cos 	2 � H

3J

� �
:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

½35�

In the case of zero magnetic field, the system
shows successive phase transitions when we change
the temperature. At a high temperature TC1, the z
component is ordered, and then at a low temperature
TC2 the transverse component is ordered to form the
distorted 120° structure61) as shown in Fig. 10 at
H = 0. The former phase transition belongs to the
universality classes of the six-state clock model, and
the latter to that of the XY model. Both of them are
of the Kosterlitz–Thouless type in two dimensions. In
three dimensions, the phase transitions are of normal
second order of the three dimensional XY universal-
ity class.62) This mechanism of successive phase
transition gives an alternate scenario to that of

Mekata model for the successive phase transitions of
frustrated Ising-like models in the triangular lattice.
Indeed successive phase transitions of this type were
also found in experiments (VCl2,63) etc.).

In the magnetic field, this model gives compli-
cated phases.64) The phase diagram in the field is
depicted in Fig. 10. This type of phase diagram has
been also observed in experiments.65)

In the case of A = 1, all the configurations which
satisfy

cos 	1 þ cos 	1 þ cos 	1 ¼ H

3
½36�

are degenerate. At finite temperatures, however, the
degeneracy is resolved by the entropy effect.66)

Generally speaking, the collinear structure is en-
tropically more favorable than the coplanar struc-
ture, and the coplanar structure is more favorable
than the non-collinear structure (umbrella structure:
Fig. 9(a)). The entropy effect is estimated by a
harmonic analysis of the model:

Hð	1; 	2; 	3; �1; �2; �3Þ ¼ Hð	01; 	02; 	03; �0
1; �

0
2; �

0
3Þ

þ @H
@	1

�	1 þ � � � þ @H
@ sin 	03�3

sin 	03��3 þ txÂx; ½37�
where 	i ¼ 	0i þ �	i, �i ¼ �0

i þ ��i, (i = 1, 2, and 3),
and

x ¼ ð�	1; �	2; �	3; sin 	01��1; sin 	
0
2��2; sin 	

0
3��3Þ; ½38�

and Â is a 6N × 6N matrix. The free energy F in the
harmonic approximation for a given configuration
ð	01; 	02; 	03; �0

1; �
0
2; �

0
3Þ is given by

(a) (b) (c) (d) (e)

Fig. 9. Spin configurations of solutions of Eq. [35] for the
antiferromagnetic anisotropic Heisenberg model in the mag-
netic field H [34]: (a) Umbrella structure, for A = 1,
ð	1; �1Þ ¼ ðacosðh=3Þ; 0Þ, ð	2; �2Þ ¼ ðacosðh=3Þ; 2
=3Þ, ð	3; �3Þ ¼
ðacosðh=3Þ; 4
=3Þ. (b) distorted 120° structure (0 ¯ h ¯ 1), for
A = 1, ð	1; �1Þ ¼ ð
; 0Þ ð	2; �2Þ ¼ ðacosððhþ 1Þ=2Þ; 0Þ, ð	3; �3Þ ¼
ðacosððhþ 1Þ=2Þ; 
Þ. (c) collinear up-up-down structure. (d) v-
shape structure (1 ¯ h ¯ 3), for A = 1, ð	1; �1Þ ¼ ðacosðh2 þ 3Þ=
4h; 0Þ, ð	2; �2Þ ¼ ðacosðh2 þ 3Þ=4hÞ; 0Þ, ð	3; �3Þ ¼ ðacosðh2 �
3=2hÞ; 
Þ. (e) collinear ferromagnetic structure. Here h = H/3J.

H/J

TC1TC2

T
(b)

(c)

(e)
(d)

0

HC2

HC1

HC3

Fig. 10. A schematic phase diagram of the Ising-like Heisenberg
model in the coordinate (T,H), where HC1 = 3J, HC2 =
2A�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2þ4A�7

p
2 J , and HC1 = (6A + 3)J.
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F=� ¼ E0 þN lnð
�Þ þ 1

2
ln
Y
i

0
�i

 !
; ½39�

where 6i is the i-th (non-zero) eigenvalue of Â. The
zero eigenvalues of Â denote some continuous
degeneracies in the ground state, and they are
removed in the product

Q0. For example, the model
has U(1) symmetry, and thus the uniform rotation
around the z axis gives the zero eigenvalue, and also
the model ofA = 1 has the degeneracy [36]. Moreover,
it has been pointed out that the model with A > 1 has
a non-trivial degeneracy that there is a ground state
for all the values of 	01. The zero modes for 3 and ? give
: and 2: to the product, respectively. We define the
ground state entropy for the configuration by

�S ¼ � kB
2

ln
Y
i

0
�i

 !
: ½40�

We plot −"S/kB for various configurations as a
function of H in Fig. 11.67)

Because of the entropy effect, at finite temper-
atures, phases of the Y-shape structure (Fig. 9(b)),
and of the up-up-down structure (Fig. 9(c)), and
of the V-shape structure (Fig. 9(d)) appear.66) In
systems with a weak XY anisotropy, the umbrella
structure is energetically favorable. However, the
thermal fluctuation still causes the structures of
Figs. 9(b)–(d), and we have a very complicated phase
diagram in the coordinate (T,H) as depicted in
Fig. 12 where we used a single-ion type anisotropy
model instead of the anisotropic coupling model [34]

H ¼ �J
X
hiji

Si � Sj þD
X
i

ðSz
i Þ2: ½41�

In the figure, we adopted a very small value of D =
0.01. If we use a larger value such as D = 0.1, the
Y-shape structure disappears, while the V shape
structure still remains.68)

4.3. Antiferromagnet on the Kagome lattice.
Finally, let us refer to the case of the Kagome lattice.
This model has the so-called corner-sharing structure
and effect of the frustration is more significant than
that in the edge-sharing lattices such as the
triangular lattice. The Ising antiferromagnet in this
lattice has no phase transition and the correlation
function decays exponentially even at T = 0.69)

Because of the high degeneracy, even with the
continuous spins, the XY and Heisenberg models do
not have a phase transition, either.70)

However, in the Ising-like Heisenberg model, the
spins have to choose the same configuration from
those given in Fig. 9 at all the triangles. For example,
in a zero or weak field, they have the distorted 120°
structure. There are still two possible configurations
at zero field as depicted in Figs. 13(a) and (b). The
system must choose one of them. This degree of
freedom gives a two-fold degeneracy of the ground
state, and it causes a phase transition of the Ising
universality class at a finite temperature.71) Indeed
the structures of Figs. 13(a) and (b) have nonzero
magnetizations m0 ¼ �ðA� 1Þ=ðAþ 1Þ, respec-
tively. Therefore, the phase transition causes an
appearance of the spontaneous magnetization. Below
the critical temperature the two-fold degeneracy is
broken, but there still remains macroscopic degener-
acy. The number of degeneracy is the same as that of
the Ising Kagome antiferromagnet in the magnetic
field.72) An example of the degenerate ground states

0 5 10

2

2.2

2.4

H/J
HC1=3 HC2=9

−∆S/kB

Umbrella−shape

Y−shape V−shape

Fig. 11. The ground state entropy [40] for A = 1 for the
umbrella, Y-shape and V-shape structures. The big circles show
entropy for the collinear phases, i.e., the up-up-down and
ferromagnetic structures.

0 0.5 1
0

5H

Temperature

9

Umbrella

V−shape

Y−shape
UUD

Induced Ferro

Fig. 12. A schematic phase diagram of a weakly XY-like
Heisenberg model in the field. D = 0.01.
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is depicted in Fig. 13(c). There is no ferrimagnetic
structure, and the spontaneous magnetization ap-
pears uniformly over the lattice. Thus, we may regard
this phase transition as a ferromagnetic phase
transition, and we called this “exotic ferromagnetic
transition”.

Configurations of the dotted lines connecting the
slanting spins characterize the degenerated ground
state configurations, and we call the line “weather-
vane line”. In a weather-vane line, the slanting spins
are parallel and each weather-vane loop contributes
kB ln 2
 to the entropy. Therefore, a configuration
with more weather-vane loops is more favorable. The
minimum length of the weather-vane loop is six.
Thus, we expect that a state with maximum number
of the weather-vane loop gives the thermodynamic
ground state, in which we have a ferrimagnetic long
range order of the z component of spins. Existence
of the long range order in the ground state due to
the entropy effect has been discussed also for the
Heisenberg model.70)

Similar induction of long range order in the
ground state of fully frustrated model was also
pointed out in the Ising antiferromagnet of S > 1/2

in the triangular lattice.73) These are examples of the
“order by disorder”74) The relaxation process of this
entropy-induced selection of configuration was also
investigated.75)

In three dimensions, the unit cell of frustration is
a tetrahedron, and various interesting phenomena
have been found in pyrochlore or spinel lattices, such
as the spin ice phenomena.76)

5. Effect of randomness

Spatial randomness of interactions also causes
various peculiar features in the ordering processes.
Generally the randomness smears out the critical
phenomena.77)–80) In particular, if the specific heat
diverges with the exponent , > 0 in the original pure
model, the exponents is renormalized to ,X = −,/
(1− ,)77) in the model with randomness. It was also
pointed out that the Ising model on the square lattice
with randomly distributed vertical coupling con-
stants keeping the horizontal coupling uniform, the
specific heat has the essential singularity, i.e., the all
the derivatives of the free energy are continuous.78)

Whether a system with randomly distributed
interaction can have a phase transition or not is a
very interesting problem. Effects of the random field
on the phase transition were studied, where the
reduction of lower critical dimensions for Ising
models was discussed.81),82)

To study the phase transition for randomly
quenched interaction, we have to average the free
energy,

Fquenchrandom ¼ �kBT lnZfixedconfiguration ½42�
not the partition function

Fannealrandom ¼ �kBT lnZfixedconfiguration: ½43�
For the former average, we need to calculate the free
energy for each fixed random configuration, which is
generally difficult, except for some special cases such
as the so-called Nishimori line.83) To avoid this
difficulty, the so-called replica trick has been
introduced.84),85)

Fquenchrandom ¼ lim
n!0

Zn
fixedconfiguration � 1

n
: ½44�

In particular, properties of spin glass have been
studied in these decades extensively.82),84),85) The
combination of the randomness and frustration
causes a very complicated ordering process. Exper-
imentally, various interesting properties, such as
memory effect, rejuvenation phenomena, etc., have
been also pointed out.86)

(a) (b)

(c)

Fig. 13. (a) Distorted chiral structure with a negative magnet-
ization, (b) distorted chiral structure with a positive magnet-
ization, and (c) a snap shot of the ground state spin
configuration of antiferromagnetic Ising-like Heisenberg model
on the Kagome lattice. The dots denote the spins directing the z
direction. The arrows denote the xy components of the spins.
The dotted lines denote the weather-vane lines.
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If the system has a well-defined ground state, the
system can be regarded as a generalized antiferro-
magnetic state. But, the spin glass shows several
properties inherent to the randomly frustrated
system, such as the divergence of the non-linear
susceptibility.87),88) The analysis of the reprica trick
was extended to the case of replica symmetry broken
(Parisi) solution which gives a new picture of ordered
state of the random system.89) As an alternate
picture, an idea of extended antiferromagnetic state
with weak stiffness has been discussed.90) Moreover, a
scenario of chirality ordering for the spin glass has
been also proposed.91) Generally, the frustration
among the interaction causes a distribution of
strength of the correlation.92),93) We may define
domains in which spins strongly interact. The
structure of the domains plays important role in the
dynamics. Large clusters relax slowly, which causes
slow a relaxation of the autocorrelation function of
spins in average. Although extensive studies for the
nature of the spin glass have been done, here we will
not discuss on them.

In the diluted ferromagnet, the domains are well
defined. When dilution probability p exceeds the
critical percolation concentration pC,94) the lattice is
separated into finite domains with probability one. In
Fig. 14, we depict a snap shot of a lattice of site
dilution with p = 0.5 which is above pC for the square
lattice with nearest neighbor interaction. We find
finite clusters on it. In this case, we expect para-
magnetic behavior. However, it has been pointed out
that randomly diluted ferromagnets have a non-
analytic free energy below the critical temperature of
the non-diluted system. Although the probability for
large clusters is very small, there is a non-vanishing

probability to find arbitrarily large clusters for any p,
which causes the non-analytic effect on the free
energy. While it has little effect on the equilibrium
properties, it has significant effect on the dynamics.
For example, the autocorrelation function of spin is
affected by the very long relaxation time of the large
clusters at the temperature below the critical temper-
ature of the pure system (p = 0), and shows a slow
relaxation than the simple exponential decay. This
type of slow relaxation is called dynamical effect of
the Griffiths singularity.95),96)

6. Quantum effect

In this section, we discuss effects of the quantum
fluctuation on the phase transition. Generally, phase
transitions of magnetic systems take place as a
macroscopic change of a classical order parameter
such as the magnetization, and there the quantum
effect is irrelevant at finite temperatures. This type of
order parameter is called “Diagonal Long Range
Order (DLRO)”. On the other hand, for the super-
fluidity and superconductivity, the quantum effect is
essential. The latter type is called “Off-Diagonal Long
Range Order (ODLRO)”.

Usually, quantum fluctuation tends to destroy
the classical ordered state (DLRO). The ground state
order–disorder transition in the transverse Ising
model97)

H ¼ �J
X
hiji

�z
i�

z
j � �

X
i

�x
i ½45�

is the most typical example of the quantum phase
transition. When ! exceeds a critical value !C, the
ground state becomes disordered, and it is called
“quantum disordered state”. The effect of quantum
fluctuation is taken into account by the Suzuki–
Trotter expression of the partition function which
is a path-integral representation of the canonical
weight.98) This formula was proposed for the quan-
tum Monte Carlo method.99) The ground state
property of a d-dimensional quantum system is
expressed by the partition function

Z ¼ lim
�!1

Tre��H: ½46�
This can be expressed by a path-integral or Suzuki–
Trotter formula in a (d +1)-dimensional space,

Z ¼ Tre��H ’ Trdþ1 e
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Fig. 14. A diluted configuration with site occupation probability
p = 0.5 which is below the critical probability of the percolation.
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where Trd+1 denotes the sum all over the spin states
including those inserted as a complete set of states
fPi jf�m

i gihf�m
i gj ðm ¼ 1; . . .nÞg, and we call n

“Suzuki–Trotter number”. If we regard the direction
of n as a new spatial direction, the model [45] is
transformed into a (d + 1)-dimensional Ising model
with the coupling constants:

�H ¼ � �J

n

X
hiji

�i;k�j;k �K2

X
k

�i;k�i;kþ1 ½48�

where

K2 ¼ � 1

2
ln tanh

��

n

� �
: ½49�

Thus, the critical property of a d-dimensional
quantum system is related to that of a (d + 1)-
dimensional classical system at finite temperature.98)

In Fig. 15, we depict configurations in the (d + 1)-
dimensional system for an one dimensional transverse
Ising model. The left and right panels show typical
configurations for the thermal fluctuation and the
quantum fluctuation, respectively. The thermal
fluctuation gives disorder in the real space while the
quantum fluctuation gives disorder in the imaginary
time space.

In the random systems such as the diluted
system, the randomness exists in the real space but
not along the imaginary time axis. Thus, the clusters
in the (d + 1)-dimensional spaces has a rod type
shape and they are not isotropic random clusters.
Because of this fact, it has been known that the
Griffiths singularity in random systems has serious
effects on static properties in the ground state.
Indeed, the magnetic susceptibility diverges in the
diluted transverse Ising model in some regions of

quantum disorder phase, which is called “quantum
Griffiths singularity”.100),101)

In the above systems, the quantum fluctuation
reduces the order, but in some cases the quantum
fluctuation induces an order. In a model of S = 1 with
a tunneling effect between the state of S = ±1

H ¼ �J
X
hiji

Sz
i S

z
j þD

X
i

ðSz
i Þ2

þ �
X
i

ððSþ
i Þ2 þ ðS�

i Þ2Þ; ½50�

where S�
i denote the operations to change the

magnetization by one, we find the spontaneous
magnetization appears in a region where no magnet-
ization exists in the classical case (! = 0).102)

Recently, various peculiar ground states of
quantum spin systems have been found in low
dimensions such as the Haldane state.103) In those
systems, spatial configuration of the singlet pairs
plays an important role.104) A transition between
different types of ground states gives the quantum
phase transition.105),106) It is also known that, in
quantum systems, inhomogeneity of the lattice shape
affects on the spin configuration in the ground state
significantly, e.g. the edge effect.107) Therefore,
randomness of lattice shapes such as the dilution
causes various non intuitive properties.108)–110) The
ground state phase transition has been studied
extensively,111) but we will not go in details.

It is also an interesting problem to study the
similarity of the quantum and thermal fluctuations.
As we see in the section 4.2, the fluctuation has
important effects on the magnetization process of the
antiferromagnetic XXZ model in the triangular
lattice. Classically, the umbrella structure is the
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Fig. 15. Configurations of the quantum Monte Carlo simulation for the transverse Ising model. (a) Thermal fluctuation, and
(b) Quantum fluctuation.
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lowest energy configuration for easy-plane (XY like)
systems, and the magnetization process M(H) is
linear until its saturated value at T = 0. However,
existence of a 1/3-plataux was observed in the
experiment on an easy-plane (XY-like) magnet
CsCuCl3.112) This observation implies an existence
of some easy-axis (Ising like) anisotropy. Because the
temperature is low, we do not expect the thermal
fluctuation, and the thermal-fluctuation induced
metamagnetic structure which was explained in the
section 4.2 is not applicable. However, Nikuni and
Shiba pointed out that the quantum fluctuation takes
the role to induce the 1/3 plateau by calculating the
energy gain of the zero-temperature fluctuation in a
spin wave theory.113) This problem was examined by
direct numerical studies of the ground state wave-
function (PWFRG114) and DMRG115)).116) There, a
metamagnetic process similar to the classical one was
revealed, and a phase diagram in the coordinate
(A,H) was obtained116),117) where A is the ratio of the
exchange energy of the xy component and that of the
z-component (see Eq. [34]).

As to the ODLRO, their cooperative properties
have been studied as the ordering of phase of the
wave function, because the ODLRO is regarded as
the problem of phase coherence of the macroscopic
wave function. Thus, phase transitions of the super-
conductivity were often analyzed by the XY mod-
el.118) Recently, the nature of ODLRO has been
studied more directly by using the quantum Monte
Carlo method, and a transition between the Mott
state and superfluidity,119) and also coexistence of the
solid state and superfluidity (supersolid)120) have
been clarified.

7. Phase transitions in the spin-crossover
type models

7.1. Spin-crossover transition. So far, we
studied orderings of the direction of spins on lattices.
However, the spin itself on each lattice site may also
change as a function of parameters. One of typical
examples is the spin-crossover transition,121) where
the spin of an atom changes between the high spin
(HS) state and the low spin (LS) state depending on
the ligand field as depicted in Fig. 16. When the
ligand field is weak, the spins of electrons align due to
the Hund law and the total spin of the atom S is
large. On the other hand when the ligand field is
strong the electrons occupy the low energy states and
S is small.

Here, we consider cases in which the energy of
the LS state is low by 2D, while the degeneracy of the

HS state (g+) is larger than that of the LS state (g−).
We denote the HS and LS states by < = 1 and −1,
respectively. The partition function of a molecule is
given by

Z1 ¼
X
�¼�1

g�e
��D� ¼ gþe��D þ g�e�D: ½51�

This can be rewritten as

Z1 ¼
ffiffiffiffiffiffi
gþ
g�

r X
�¼�1

e��ðD�1
2kBT ln gÞ�; ½52�

where g = g+/g−. This partition function can be
regarded as that of a model with a temperature
dependent field

H ¼ �Dþ 1

2
kBT ln g: ½53�

The importance of the interaction among
molecules for the SC transition was pointed out in
the observation of the specific heat,122) and actually
the transition often takes place as a discontinuous
transition. The variety of transitions, e.g., the
smooth change and discontinuous change can be
attributed to relations among parameters. If we
include an interactions among spin states Hint, the
Hamiltonian of the system is given by

H ¼ Hintðf�igÞ þ
X
i

D� 1

2
kBT lnðgÞ

� �
�i: ½54�

D
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Fig. 16. The High spin (HS) and low spin (LS) states, and a
schematic energy structure as a function of the radius R of the
molecule.
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The simplest choice of the interaction is the
ferromagnetic Ising model123) Hint ¼ �J

P
hiji

�i�j.

For this model, we can obtain the phase diagram of
the SC system by making use of that of the
ferromagnetic systems with the temperature depend-
ent magnetic field [53].

The free energy of the ferromagnetic Ising model

Hint ¼ �J
X
hiji

�i�j �H
X
i

�i: ½55�

in the mean-field theory is given by

F ðm;T ;HÞ ¼ 1

2
zJm2 � kBT lnð2 coshð�zJmþ �HÞÞ;

½56�
where m ¼ h�ii. The spinodal point is given by

@F ðm;T;HÞ
@m

¼ 0 and
@2F ðm;T ;HÞ

@m2
¼ 0; ½57�

and we have the spinodal field as
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Let the critical temperature of the system be TC = zJ,
and then the phase diagram in the coordinate (T,H)
is schematically given by Fig. 17 with the lines
indicating spinodal field. Within the spinodal fields
[58], there is a metastable state with the magnet-
ization opposite to the field H. In the present case,
the spinodal field at T = 0 is zJ.

It has turned out that there are various ordering
patterns of the HS fraction124),125)

fHSðT Þ ¼ ðmðT;HÞ þ 1Þ=2: ½59�
In this phase diagram, temperature dependence of
the model [54] is given by the straight lines (I–V)
with the slope given by the relation [53]. For large
D, the line of [53] crosses the line of H = 0 at a
higher temperature than TC (along the line I). In
this case the change of m(T,H) along this line is
smooth. That is, the change of fHS(T) for large D is
smooth.

On the other hand, for small D, the line crosses
the line of H = 0 at a temperature below TC (the lines
III–V). There, fHS(T) changes discontinuously at
H = 0, and fHS(T) shows a thermal hysteresis between
the lines of the spinodal fields. The relation [53]
indicates that the thermal hysteresis takes place for

D < DC1 ¼ 1

2
kBTC ln g: ½60�

If D > zJ and D < DC1, the line [53] crosses the
spinodal lines as plotted by the dotted line (III).

If D < zJ and D < DC1, beside the thermal
hysteresis between T1 and T2, the line [53] again
crosses the spinodal line [58] at a low temperature T3

(the line IV), because the slop of the spinodal line [58]
is infinite at T = 0. Below this crossing point
(T < T3), the HS state is metastable. This low
temperature metastable HS state may explain the
long life time of the LIESST (light-induced excited
spin state trapping) state.124) Existence of such
metastable state has been confirmed experimentally
in a charge transfer material.126)

If D < zJ and D > DC1, although there is no
thermal hysteresis, the low temperature metastable
HS state exists (along the line II). The critical value
of D for the low temperature metastable state is

DC2 ¼ zJ: ½61�
If the line [53] stays inside the metastable region

(the line V), the HS state remains metastable at all
the temperatures. The critical value of D for this case
is given by

DC3 ¼ zJ tanh
1

2
ln g

� �
: ½62�

0

 2

0

2 H/TC

T/TC

(I)
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(III)

(IV)
(V)

coexistence line disordered state

spinodal field

T3 T2 T1 HS state
hysteresis

LS state
metastable
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Spin−crossover states along the case (IV)

1 2

Fig. 17. Phase diagram of the ferromagnetic system in the
coordinate (T,H) with the spinodal field [58]. The temperature
dependences of the SC models [54] for various cases (I)–(V) are
plotted (see the text). Phases along the line (IV) are indicated
blow the figure, where T1 and T2 denote the temperatures of the
upper limit and lower limit of the thermal hysteresis, respec-
tively, and T3 denotes the temperature below which the
metastable HS state appears.
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In Fig. 18, types of ordering processes corre-
sponding the lines (I–V), and the phase diagram in
the coordinate ðln g;D=zJÞ are depicted.124),125) We
find that the type IV appears for all the sequences in
the parameter space. We call this feature “generic
sequence of the temperature dependence of ordering
fHSðT Þ”. We found this type of sequence also appears

in the change of other parameters such as the
pressure and stiffness of the elastic constant.

This type of description can be applied to many
systems where the energy and the degeneracy of local
degree of freedom compete, e.g. the charge transfer
(CT) materials,127) and we expect the present generic
sequence will be found in all the such materials.
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Fig. 18. Phase diagram of the ordering patterns fHS(T) in the coordinate ðD=zJ; ln gÞ. Ordering patterns for various values of D: (Type I)
smooth change for D > DC, (Type II) smooth change and a metastable branch at low temperatures for D > DC1 and D < DC2,
(Type III) discontinuous change for DC1 > D > DC2, (Type IV) discontinuous change and a metastable branch at low temperatures
for DC1 > D and D < DC2, and (Type V) HS is always stable or metastable for D < DC3.
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7.2. Mean-field phase transition due to the
elastic interaction. So far, we studied the spin-
crossover phenomena in the analogy of ferromagnetic
model on a lattice. However, a significant feature of
the SC system is the volume change between the HS
and LS states. As we depicted in Fig. 19, the volume
change causes a distortion of the lattice. Therefore, in
this case, an elastic energy due to the deformation of
the lattice must be taken into account.128) The elastic
interaction favors non-deformed structure. In the
previous subsection, we introduced a nearest neigh-
bor ferromagnetic interaction Eq. [55] between the
molecules to induce the cooperative behavior. How-
ever, it is expected that even in systems without the
short range interaction, the elastic interaction can
induce a cooperative effect. Thus we studied a model
with only an elastic interaction between the mole-
cules, e.g.,

V ¼ k1
2

X
hi;ji

½rij � ðRi þ RjÞ�2

þ k2
2

X
hhi;jii

½rij �
ffiffiffi
2

p
ðRi þ RjÞ�2; ½63�

where rij is the distance between the ith and jth sites,
and Ri and Rj are the molecular radii, RHS and RLS

for HS and LS, respectively. In the simulation we
adopted the ratio RHS/RLS = 1.1 and the elastic
constants k1/k2 =10 with k1 = 50.

This scenario of phase transition due to the
elastic interaction has been confirmed in both studies
of molecular dynamics method129) and Monte Carlo
method.130) Because the elastic interaction causes
an effective long range interaction among the spin
states, characteristics of the critical phenomena of
the model change from that of the short range

ferromagnetic Ising model. It turned out that the
model exhibits critical behavior of the universality
class of the mean-field model.131)

Realization of the mean-field universality class
has been discussed for the models in higher (D > 4)
dimensions or models with a long range exchange
model.132) In contrast, the SC model consists of a
normal short range elastic model in three dimensional
materials, and thus we expect this mean-field
universality class will be found in a wide range of
real materials.

As a consequence of the mean-field criticality, we
found that the model does not show configurations
with large domains even near the critical point131) as
depicted in Fig. 20. That is, the model does not show
divergence of the correlation length of the order
parameter. The model exhibits a symmetry breaking
at the critical point keeping the uniformity of the
configuration. This fact indicates that the model will
not show the critical opalescence which is a symbol of
the phase transition of the short range models.

At the end points of the hysteresis loop, the
spinodal phenomenon takes place.133) We expect that
at the points the nucleation processes take place and
inhomogeneous configurations appear, which is an
essential feature of the relaxation from the metasta-
ble state in short-range interaction models. However,
in the present model, the configuration is kept
uniform. Moreover, the spinodal phenomenon occurs
as a true critical change in the present elastic model,
while it is a crossover in the short range model due to
the local nucleation processes. A similar threshold
singular behavior occurs in the photo-excitation
process from the LS states to a photo-induced HS
states (LIESST), and the critical properties of the
switching have been studied.134)

(a) (b)

Fig. 19. Deformation due to the size difference of molecules (a) A
typical configuration near the critical point in the ferromagnetic
Ising model RH = RL. (b) The lattice deformation in the elastic
model (RH > RL) with the same spin configuration.

Fig. 20. A typical configuration near the critical point. T =
0.2 ’ TC, D = 0.6, k = 40, g = 20, RHS = 1.1RLS.
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Although the elastic interaction causes an
effective long range interaction, it is not the infinite
range model (Husimi–Temperley model), and thus
the boundary condition has a serious effects. If we
study the system in a free boundary condition,135) the
relaxation begins from the corners and macroscopic
domain structure appears as depicted in Fig. 21. The
effect of boundary condition in the effective long
range interaction will be an interesting problem in
the future.

8. Summary and discussion

We have overviewed natures of phase transi-
tions of systems with large fluctuation. We saw
various types of ordering processes reflecting struc-
ture of the order parameters. The fluctuations
played an important role not only to destroy the
ordered state but also to choose an ordered state and
also to create a new type of ordered state both in
classical and quantum systems. We have found some
examples of peculiar orders, and it would be also an
interesting problem to study the ordered states
inherent to the high dimensions where more than
one order can percolate and be in ordered state.
Moreover, in the last section we studied the off-
lattice model. The structural phase transition is a
challenging topic in this direction.

In this paper we mainly studied static
properties of phase transitions. Phase transitions
also show various types of relaxation processes.
The dynamics is also an important characteristic
of the phase transition, which will be reviewed
elsewhere.

We hope the resent overview would help the
further studies of phase transition.
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