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Fabrication, properties, and applications
of porous metals with directional pores
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Abstract: Lotus-type porous metals with aligned long cylindrical pores are fabricated by
unidirectional solidification from the melt with a dissolved gas such as hydrogen, nitrogen, or
oxygen. The gas atoms can be dissolved into the melt via a pressurized gas atmosphere or thermal
decomposition of gaseous compounds. Three types of solidification techniques have been developed:
mold casting, continuous zone melting, and continuous casting techniques. The last method is
superior from the viewpoint of mass production of lotus metals. The observed anisotropic behaviors
of the mechanical properties, sound absorption, and thermal conductivity are inherent to the
anisotropic porous structure. In particular, the remarkable anisotropy in the mechanical strength is
attributed to the stress concentration around the pores aligned perpendicular to the loading
direction. Heat sinks are a promising application of lotus metals due to the high cooling performance
with a large heat transfer.
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1. Introduction

Porous and foamed metals exhibit various
characteristics that differ from bulk metals, including
possessing a low density and large surface area.
These metals are expected to be used as lightweight
materials, catalyst carriers, electrodes, vibration and
acoustic energy damping materials, impact energy
absorption materials, etc.1) However, porous and
foamed metals all suffer from deteriorating mechan-
ical properties such as strength, stiffness, and fatigue
due to the inhomogeneous pore number density
distribution and pore size. Many methods, including
powder metallurgy and the melt route, have been used
to develop porous materials.2) Among these materials,
lotus-type porous metals have attracted much atten-
tion because their long cylindrical pores align in one
direction. These metals are fabricated by a unidirec-
tional solidification process using gas from a pres-
surized gas atmosphere such as hydrogen (Gasar

methods)3),4) or thermal decomposition of gas com-
pounds such as hydrides.5) The pores evolve from the
insoluble gas when the molten metal dissolving the
gas is solidified. Compared to conventional porous
metals, which have nearly spherical and isotropic
pores, these metals exhibit superior mechanical
properties.6)

The formation of elongated gas pores during
solidification has been investigated since the study
of porous ice by Chalmers.7) Air contained in water
is rejected by water during the freezing process,
and this air accumulates in the advancing interface
until its concentration is sufficient for bubbles to
nucleate. Once a bubble forms, it grows in the
solidification direction to evolve a long cylindrical
pore. Additionally, Knacke et al.,8) Svensson and
Fredriksson,9) and Imabayashi et al.10) have studied
the formation of directional pores in metals from
the viewpoint of casting defects, while Shapovalov
et al. have investigated the applicability of metals
fabricated by high-pressure hydrogen as functional
materials.3) Nakajima et al. have further fabricated
various directional porous metals using solidifi-
cation techniques in a pressurized gas atmosphere4)

and by thermal decomposition of gaseous com-
pounds.5) Herein because the morphology of direc-
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tional porous metals resembles a lotus root, we refer
to these materials as lotus-type porous metals.

This article reviews recent developments in the
fabrication techniques of lotus-type porous metals,
their mechanical and physical properties, and their
application to heat sinks.

2. Fabrication

2.1 Solidification techniques. Lotus metals
can be fabricated by unidirectional solidification of
the melt dissolving gas. The following three solid-
ification techniques have been developed.

2.1.1 Mold casting technique. Figure 1 schemati-
cally depicts the mold casting technique used to
fabricate lotus metals; a metal inside a crucible is
melted by an induction heating in a high-pressure
gas atmosphere. The gas is dissolved up to the equi-
librium gas concentration into the molten metal
under a given gas pressure according to Sieverts’
law.11) The melt, which is saturated with gas, is
poured into the mold. When part of the mold is
cooled by a chiller or circulated water, the melt
is solidified unidirectionally in the vicinity of the
cooling part. The elongated pores can evolve and
grow due to the influence of the unidirectional
solidification. Moving the location of the cooling part
can control the pore growth direction.

The morphology of lotus metals can be charac-
terized by the porosity, pore diameter, pore length,
pore distribution, etc. Variables used to control the
pore morphology are the melt temperature, solid-
ification rate, type of dissolving gas, gas pressure,
etc. Hydrogen gas is most commonly used to
fabricate various lotus metals and alloys: iron, nickel,
aluminum, copper, magnesium, cobalt, tungsten,

manganese, chromium, beryllium and their alloys,
while nitrogen is used for iron, and oxygen is for
silver.12) Fortunately, most base metals for com-
mercially available, practical alloys can be made
porous. Figure 2 shows typical examples of optical
micrographs on the cross sections (above) and
longitudinal sections (below) of lotus-type porous
copper.

Because hydrogen is inflammable and explosive
when oxygen is present, its use is inconvenient from
the viewpoint of safety. Thus, employing a gas other
than hydrogen is desirable. Nitrogen is an important,
common alloying element to improve corrosion
resistance and mechanical properties of steels.13) Iron
exhibits a large nitrogen solubility difference between
the solid and liquid at its melting temperature,14)–16)

which is similar to that of hydrogen. Utilizing the
nitrogen solubility difference between the liquid and
solid, lotus iron can be fabricated by above tech-
nique.17)

2.1.2 Continuous zone melting technique.
Figures 3(a) and (b) show attempts to use the mold
casting technique to produce lotus copper and stain-
less steel, respectively. Although lotus copper has a
uniform distribution of cylindrical pores, stainless
steel does not. The difference is attributed to the
thermal conductivities of the metals. For metals and
alloys with low thermal conductivities, although the
heat from the melt is easily dissipated to the water-
cooled plate during the solidification process, cooling
becomes slower at the upper part of the solidified ingot
because the ingot is far from the cooling part, leading
to coarser pores. Consequently, only porous metals
and alloys with non-uniform pore sizes and porosities
can be produced as illustrated in Fig. 3(b).18)

Fig. 1. Mold casting technique to fabricate lotus-type porous metals.
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Fig. 3. Comparison of pore evolution in lotus metals fabricated by the mold casting technique in a mixture gas of hydrogen and argon.
Above are schematic drawings for pore evolution during unidirectional solidification. Below are optical micrographs of sectional views
parallel to the solidification direction. Left is lotus copper fabricated in a mixture gas of 0.3MPa hydrogen and 0.7MPa argon. Right
is lotus stainless steel (SUS304L) fabricated in a mixture gas of 1.0MPa hydrogen and 1.0MPa argon. (a) Homogeneous pore size and
porosity are observed in copper and magnesium with a high thermal conductivity, and (b) inhomogeneous pore size and porosity are
found in stainless steel with a low thermal conductivity. Magnitude of the thermal conductivity affects the solidification velocity of the
melt, resulting in the different pore morphologies.
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Fig. 2. Typical examples of optical micrographs on the cross-section of lotus copper fabricated by the mold casting technique in a
hydrogen atmosphere at different pressures. Above are cross-sections perpendicular to the solidification direction and below are cross-
sections parallel to the solidification direction. (a) 0.4MPa hydrogen, porosity 44.9%, and (b) 0.8MPa hydrogen, porosity 36.6%.
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To overcome this shortcoming, Ikeda et al.19)

have developed a continuous zone melting technique,
which is depicted in Fig. 4(a). While part of the
specimen rod is melted by induction heating, the
hydrogen (or nitrogen) gas is absorbed into the melt
up to the gas equilibrium solubility in the pressurized
gas atmosphere according to Sieverts’ law. Concur-
rently, the specimen rod is moved downward at a
given velocity. In the lower part of the melt zone,
solidification occurs simultaneously. Then direction-
ally elongated pores evolve by precipitation of the
insoluble gas in the solidified specimen rod. If the
transfer velocity is kept constant, the solidification
velocity becomes constant, which should yield a
constant pore size. On the other hand, the mold
casting technique cannot control the solidification
velocity because the velocity is uniquely determined
by its own inherent thermal conductivity. Figure 4(b)
shows a sectional view of a lotus stainless steel rod
(SUS304L). The pore size and porosity are almost
homogeneous throughout the solidified specimen rod.

2.1.3 Continuous casting technique. When lotus
metals are practically employed, mass production is
indispensable. Because the aforementioned methods
are not suitable due to the limitation of ingot size,
we have developed a new “continuous casting
technique”, which can be used to fabricate a long

Nonporous metal

Melting zone

Porous metal
Solidifying
direction

Vector sum of
inward cooling 
and upward cooling

Moving

Metal rod

Induction coil

Blower

Under pressurized
hydrogen gas

(a)
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Fig. 4. (a) Schematic drawings of the melting portion of the continuous zone melting technique. (b) Sectional views of lotus stainless
steels fabricated by the continuous zone melting technique in 2.0MPa hydrogen atmosphere. Transfer velocity of the rod is
330 µms!1. Nearly homogeneous pore size (320 µm) and porosity (40%) are obtained throughout the ingot.
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Fig. 5. Schematic drawing of the fabrication apparatus of lotus
metals by the continuous casting technique. Large crucible and
induction heating coil are located in the upper part of the
pressure vessel to melt the metal and dissolve the gas into the
melt, whereas the mold with the cooling part and transfer
mechanism of the solidified metal slab with pinch rolls are
installed in the lower part of the vessel to solidify the melt and
continuously transfer the slab downward.
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slab or rod (Fig. 5).20) The metal is melted in a
crucible by radio-frequency induction heating in a
high-pressure mixture gas. Then the molten metal is
pulled down and solidified simultaneously through
the cooled mold at a given transfer velocity. Figure 6
shows the cross sections parallel and perpendicular
to the transfer direction of lotus copper fabricated
in a mixture gas of hydrogen 0.25MPa and argon
0.15MPa with a transfer velocity of 100mmmin!1.
The pore size and porosity are almost homogeneous
throughout the solidified specimen slab, which is
more than 700mm long.

Figure 7 plots the average pore diameter and
porosity against the transfer velocity. The average
pore diameter decreases as the transfer velocity in-
creases, whereas the porosity is independent of the

velocity. The amount of hydrogen diffusing from the
liquid to the pores increases as the transfer velocity
decreases. Thus, pores formed at a lower velocity are
larger than those formed at a higher velocity. Unlike
the pore size, the number density of the pores in-
creases as the transfer velocity increases. Increasing
the transfer velocity causes the hydrogen super-
saturation of the solid–liquid interface to increase;
thus, the number density of the pores increases and
the pore size decreases. Therefore, the transfer
velocity can control the pore size, while the hydrogen
pressure can adjust the porosity.

2.2 Gas dissolving methods. The fabrication
process of lotus metals with unidirectional elongated
pores requires the use of pressurized gas such as
hydrogen, nitrogen, or oxygen. Although hydrogen

20 mm

Pressure: H2 0.25MPa, Ar 0.15MPa

Transfer velocity: 100 mm/min

(a) (b)

Fig. 6. (a) Photograph of lotus copper fabricated using the continuous casting technique, and (b) cross-sections parallel and
perpendicular to the transfer direction of lotus copper fabricated in a mixture gas of hydrogen 0.25MPa and argon 0.15MPa by the
continuous casting technique with a transfer velocity of 100mmmin!1.
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Fig. 7. (a) Average pore diameter and (b) porosity versus the transfer velocity of lotus copper fabricated in a mixture gas of hydrogen
0.25MPa and argon 0.15MPa by the continuous casting technique.
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gas is the most useful, it is explosive and inflammable
when mixed with a small amount of oxygen. Thus,
it is inconvenient for mass production in industrial
applications, and lotus metal fabrication requires a
safety procedure. However, an alternate technique
that does not employ hydrogen gas would alleviate
such difficulty. Makaya and Fredriksson21) have
produced porous Fe-base materials by dissolving a
CrN compound into a metallic melt of Fe-base alloy
in an argon atmosphere. The decomposition of the
compound leads to the dissolution of a gas into the
melt, and pores are subsequently formed during
solidification by the solubility gap between the liquid
and solid phases. Porous metals with an isotropic
pore structure are solidified from the melt in the
crucible.

However, the production of lotus metals with an
anisotropic cylindrical pore structure had not been
investigated prior to the work of Nakajima and
Ide. Nakajima and Ide5) studied the fabrication of
lotus copper using titanium hydride in an argon
atmosphere instead of pressurized hydrogen atmo-
sphere. This method is called the “thermal decom-
position method” (TDM). Because the solubility of
hydrogen in aluminum is low, the porosity of lotus
aluminum is inevitably low, on the level of 10%.
Increasing the hydrogen pressure does not effectively
increase the porosity, but it shrink the pores in
accordance to Boyle’s law. At a lower atmospheric
pressure, the porosity increases as the hydrogen
pressure decreases. The advantage of TDM under
a lower pressure atmosphere is that the hydrogen
source can be supplied in the melt by the decom-
position of compounds containing gas elements even
in a vacuum, the lowest pressure.

A high-pressure chamber is unnecessary in TDM
because gas compounds such as hydride and nitride
are used as the dissolving gas source. Typically the
atmosphere during melting and solidification is argon
or a vacuum to prevent oxidation and impurity
inclusions. To fabricate lotus copper via TDM in
0.1MPa argon, a few pellets of titanium hydride are
placed on the bottom plate of the cooled mold.
Molten copper, which is melted by radio-frequency
induction heating in a graphite crucible, is poured
into the mold (Fig. 8). During the unidirectional
solidification, the hydride decomposes into titanium
and hydrogen. The insoluble hydrogen in the solid-
ified phase evolves into pores, while the titanium may
form titanium oxide, which serves as nucleation sites
for the gas pores. Figure 9 shows optical micrographs
of the cross-sectional views of lotus copper parallel

and perpendicular to the solidification direction. The
pore growth direction is coincident to the direction of
the unidirectional solidification, which is consistent
with the conventional high-pressure gas method
(PGM). This result reveals that TDM and PGM
have similar principal mechanisms for pore evolution.

The porosity has been investigated as a function
of the mass of titanium hydride. Adding 0.10 g of
the hydride abruptly increases the porosity, but the
addition of more titanium hydride causes the
porosity to become constant near 55%. When 0.10 g
of titanium hydride is added to 200 g in the melt of
copper, the concentration of hydrogen is 0.128 at.%,
which is comparable to the maximum solubility of
hydrogen in liquid copper near the melting point.22)

Therefore, even if more than 0.10 g of the hydride is
added, the supersaturated hydrogen may generate
gas bubbles, which are then liberated from the melt
into the atmosphere.

For lotus aluminum fabricated via TDM, 0.2 g of
a gas compound such as calcium hydroxide, sodium
bicarbonate, or titanium hydride has been added to
100 g molten aluminum in a vacuum and solidified
unidirectionally. Figure 10 shows the microstructure
of lotus aluminum on cross sections parallel and
perpendicular to the solidification direction.23) Pores
with an average size of 400, 268, and 1086 µm are
evolved using calcium hydroxide, sodium bicarbon-

Mold

Chiller
TiH2 pellets

Graphite crucible Induction 
coil

Molten Cu

Pore

Fig. 8. Schematic drawing of the principle to fabricate lotus
metals using the thermal decomposition method and a gas
compound via the mold casting technique. Pellets of titanium
hydride are set in the mold. Molten copper poured from the
crucible into the mold reacts with the hydride, and hydrogen
dissolves in the melt simultaneously. When the melt solidifies in
the upward direction, insoluble hydrogen evolves directional
pores.
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ate, and titanium hydride, respectively. The porosity
is as high as 20%, regardless of the gas compound.
Although the pore size is small, as little as 400 µm, its
distribution is homogeneous in lotus aluminum when
employing calcium hydroxide and sodium bicarbon-
ate. In contrast, the pore size is as large as 1000 µm
and its distribution is not uniform when employing
titanium hydride.

Table 1 is a compilation of the decomposition
reactions of the three compounds in an aluminum
melt. Calcium hydroxide or sodium bicarbonate
decomposes into compounds (CaO, Na2CO3), carbon
dioxide, and vapor, and the latter further decomposes
into metallic oxide and hydrogen. These reactions
produce small pores with a homogeneous distribu-
tion. On the other hand, titanium hydride decom-

Fig. 9. Optical micrographs of cross-sectional views of lotus copper (upper views) perpendicular and (lower views) parallel to the
solidification direction. Mass of titanium hydride added to the melt of 200 g copper is (a) 0.075 g, (b) 0.10 g, (c) 0.125 g, and (d) 0.25 g.
Melting and subsequent solidification are carried out in 0.1MPa argon atmosphere.

Fig. 10. Optical micrographs of lotus aluminum fabricated via the thermal decomposition method using different compounds by the
mold casting technique in vacuum at 1023K. Upper and lower micrographs are the cross sections perpendicular and parallel to the
solidification direction, respectively.

Table 1. Decomposition reactions and temperature of gaseous
compounds

Reactions
Decomposition

temperature (K)

Gas atoms or

molecules to be

dissolved

and bubbled

Ca(OH)2 ! CaO D H2O 853 H

H2O!metallic oxide D 2H

2NaHCO3

! Na2CO3 D H2O D CO2
473 H, CO, O

H2O!metallic oxide D 2H

TiH2 ! Ti D 2H 723 H
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poses directly into titanium and hydrogen, resulting
in large pores with an inhomogeneous distribution.
Although the reasons for this difference are currently
unclear, the evolution of small pores with a homoge-
neous distribution may be attributed to the existence
of oxide particles, which may serve as pore nucleation
sites. To investigate the content of pore gas, gas
analysis has been conducted; hydrogen is the pore
formation source for titanium hydride, calcium
hydroxide, and sodium bicarbonate.

3. Properties

Conventional porous metals, including foamed
metals, cellular metals, and sintered metals, possess
almost nearly spherical pores and exhibit isotropic
mechanical properties. Moreover, the shape of the
pores is not always circular and can be distorted,
leading the stress to easily concentrate, which deteri-
orates the strength. In addition, the non-uniform dis-
tribution of pore size and porosity causes to the stress
to concentrate, further degrading the strength. These
behaviors lead to inferior mechanical properties.

Unlike conventional porous metals, lotus metals
have elongated cylindrical pores aligned in one
direction. Additionally, their various mechanical
properties remarkably differ from those of isotropic
porous materials, and exhibit significant anisotropic
behavior. Several topics regarding the mechanical
and physical properties are described below.

3.1 Elastic properties. Lotus metals macro-
scopically exhibit hexagonal (transverse-isotropy)
elastic symmetry with the c-axis parallel to the pore
direction.24),25) In this case, there are five independent
elastic constants, c11, c33, c13, c44, and c66 F (c11 !
c12)/2. To determine all of them, resonant ultrasound
spectroscopy (RUS)26),27) and mode-selective electro-
magnetic acoustic resonance (EMAR)28) techniques
have been used. The elastic constants are determined

through iterative calculations from the resonant
spectrum obtained by this RUS–EMAR combination
technique.

Figure 11shows the porosity dependence of
Young’s moduli E? and E== and the elastic stiffness
c11, c33, c13, c44, and c66 of lotus iron with hydrogen or
nitrogen pores where E== and E? indicate Young’s
moduli parallel and perpendicular to the pore direc-
tion, respectively. Besides the porosity dependence
of lotus copper,24) E== decreases linearly, whereas E?
drops steeply in the small porosity region. After
extensive research on the effective physical properties
(e.g., the electrical conductivity, yield stress, and
elastic modulus) of porous materials, their porosity
dependencies have been experimentally found to
follow the power-law formula29)–33)

M ¼ M0ð1� pÞm; ½1�
where M and M0 are the physical properties of the
porous and nonporous materials, respectively, and m
is the coefficient empirically determined. The solid
and broken lines in Fig. 11 indicate the fit of Eq. [1]
to the measured data. Thus, it is concluded that
Eq. [1] holds for the effective elastic constants of
anisotropic porous metals.

3.2 Tensile strength. Little data is available
on the mechanical properties of this type of porous
metal. Wolla and Provenzano34) and Simone and
Gibson35) have measured the tensile strength of
porous copper with the pore orientation parallel to
the tensile direction. However, their data is largely
scattered, which may be attributed to microstruc-
tural variations within each specimen as well as in
between the specimens. Furthermore, an investiga-
tion on the anisotropy of the mechanical properties
of lotus metals with elongated cylindrical pores
has yet to be conducted. Hyun et al.6) have measured
the ultimate tensile strength and the yield strength
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Fig. 11. Porosity dependence of (a) two Young’s moduli, E== in the direction parallel to the x3-axis and E? in the direction perpendicular
to the x3-axis, and the elastic stiffness coefficients, (b) c11, c33, c13, (c) c44, and c66 of lotus iron. Transverse isotropy condition
c66 F (c11 ! c12)/2 holds. Each line is obtained by fitting Eq. [1] to the measurements.

Fabrication, properties, and applications of porous metals with directional poresNo. 9] 891



of lotus copper, and elucidated the uniaxial tensile
behavior of lotus copper with the pore orienta-
tion parallel and perpendicular to the tensile direc-
tion. Moreover, the fracture surfaces of selected
tensile test specimens have been investigated to
obtain information about the fracture mode of these
materials.

Figure 12 plots the ultimate tensile strength of
specimens with cylindrical pore orientation parallel
to the tensile direction against porosity. The data
points for the ultimate tensile strengths lie on a
straight line passing through the point of 0MPa at
a porosity of 100%, indicating that the presence of
pores does not change the specific ultimate tensile
strength. This fact indicates that the pores with axes
aligned parallel to the tensile direction do not cause
the stress to concentrate in tensile specimens. Thus,
the simple rule of a mixture of the empty pores and
the solid body can be applied to these specimens.
Figure 12 also plots the ultimate strengths of speci-
mens with cylindrical pores perpendicular to the
tensile direction versus porosity. The ultimate tensile
strength of the specimen with pores perpendicular
to the tensile direction is much lower than that of
specimen with pores parallel to the tensile direction
at a given porosity.

Boccaccini et al.36) have suggested an empirical
relation in the form of

� ¼ �0ð1� pÞK ½2�
to describe the variation in the strength with porosity
p, where K is a constant that depends on the
materials and fabrication method. K is related to

the stress concentration around the pores in the
porous materials. This formula is identical to
Eq. [1].

For a specimen with cylindrical pores aligned
parallel to the tensile direction, the value of K
approaches unity; stress does not concentrate. Thus,
Eq. [2] can be simply rewritten as

� ¼ �0ð1� pÞ: ½3�
However, for a specimen with cylindrical pores
oriented perpendicular to the tensile direction, the
value of K approaches 3. Then the stress concen-
tration can be expressed as

� ¼ �0ð1� pÞ3: ½4�
Figure 12 shows the ultimate tensile strength eval-
uated from Eqs. [3] and [4]. The experimental results
agree well with the dotted lines estimated from
Eqs. [3] and [4]. Thus, the tensile strength for lotus
copper with cylindrical pores parallel to the tensile
direction is higher than that perpendicular to the
tensile direction. Hence, the anisotropy of the
strength is attributed to the stress concentration
around the pores. Because such anisotropy has been
observed in lotus magnesium, iron and its alloys,
anisotropy is a characteristic of lotus metals.

Here, we have to remark on the abnormal tensile
properties of lotus iron fabricated by nitrogen. Hyun
et al.37) fabricated lotus iron, not only using hydrogen
gas but also by nitrogen gas. They found lotus iron
exhibits a superior mechanical strength. The tensile
strength of lotus iron with cylindrical pores parallel
to the tensile direction, which was fabricated in
hydrogen, obeys the line fitted to the constant
specific strength; the strength of 100MPa in about
50% porosity. However, the tensile strength of lotus
iron fabricated in nitrogen is twice the predicted
value. The high strength is ascribed to solid solution
strengthening due to the solute nitrogen atoms,
which contains 0.0873mass%.

The anisotropic tensile deformation of lotus
copper has been recently investigated with an
emphasis on crack formation during deformation.38)

The microscopic deformation was analyzed by an
acoustic emission (AE) method, which can detect
crack formation. A broadband AE sensor is placed on
the specimen during tensile tests to generate an AE
signal by deformation. Figure 13 shows the ampli-
tudes of the burst AE signals detected during the
deformation of lotus copper and the corresponding
stress–strain curves for (a) parallel loading and (b)
perpendicular loading. The elongation and peak
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Fig. 12. Porosity dependence of the ultimate tensile strength of
lotus copper parallel and perpendicular to the pore axis.
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stress (ultimate tensile strength) for perpendicular
loading are much smaller than those for parallel
loading, which is consistent with the aforementioned
result for tensile strength. It is significant that many
burst AE signals are detected after yielding to a
fracture, regardless of the loading direction. Unlike
lotus copper, burst AE signals are not detected in
nonporous copper, as shown in Fig. 13(c). Thus, the
burst AE signals associated with lotus copper can
be attributed to pore-related crack formation. The
cumulative AE counts per unit of nominal strain
for perpendicular loading are larger than those for
parallel loading; the cracks are formed more easily
under perpendicular loading.

The changes in the cross-section, "S, during
parallel and perpendicular tensile loading for lotus
copper and nonporous copper have also been
measured. The value of "S for perpendicular loading
is smaller than that for parallel loading, and the
values of "S in lotus copper are much smaller
than those in nonporous copper. These observations
imply that under perpendicular loading, lotus copper

macroscopically behaves as a semi-brittle material,
although nonporous copper is ductile, whereas under
parallel loading, lotus copper behaves in an inter-
mediate manner between deformation under perpen-
dicular loading and that of nonporous copper. These
deformation behaviors of lotus copper are qualita-
tively consistent with that of a ductile metal, which
tends to deform as a brittle material under high stress
triaxiality.39)

3.3 Sound absorption. Sound absorption
materials with advanced performances to noises are
required for car mufflers, air-conditioner parts, pump
chambers, elevated roads, etc. Currently glass wool
and foamed aluminum with closed pores are the most
commonly marketed sound absorbing materials. In
most cases, these materials have a low strength, but a
good sound absorption capacity. The development
of a sound absorbing material with comprehensive
characteristics such as high strength, lightweight,
and good sound absorption capacity is desirable. To
investigate whether lotus metals exhibit significant
sound absorption characteristics, Xie et al.40)–42) have
measured the sound absorption coefficients of lotus
magnesium and copper plates by a standing-wave
method; the details are provided in JIS A1405-1963
standards.43) The absorption coefficient depends
on the angle between the material surface and
the incident sound wave. In their experiments, the
specimen surface was perpendicular to the incident
sound wave, and the specimen was set on a rigid wall
in the sound tube. A pure sound with a single
frequency was generated from a speaker installed at
the other end. The standing-wave is caused by the
interference between the incidence and reflection
waves in the tube.

The absorption coefficients for lotus copper ,0

have been measured as functions of pore diameter,
porosity, and specimen thickness in the frequency
range from 125Hz to 4 kHz. The results can be
summarized by:
• ,0 increases as the pore diameter decreases from

660 µm to 460 µm.
• ,0 increases as porosity increases from 43% to

62%.
• ,0 increases as thickness increases.

A similar tendency has been observed for lotus
magnesium.41),42) Figure 14 compares the absorption
coefficients of lotus copper, foam aluminum, and glass
wool with the same thickness specimen and frequency
region. Similar to commercially available glass wool
and foam aluminum, lotus metals exhibit a superior
sound absorbing capacity. The foam aluminum is
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Fig. 13. Amplitude of the burst AE signals detected during
deformation and the corresponding stress–strain curves for lotus
copper under (a) parallel and (b) perpendicular loadings.
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composed of numerous independent closed pores.
For a high sound absorption, continuous pores
are necessary so that minute cracks are introduced
by rolling to connect the pores of the foam
aluminum.44)

It is thought that the viscosity resistance of air
in the pores plays an important role in absorbing
sound for a porous material. Sound is absorbed by
the resistance in the fiber and the thin space of the
pores when it enters into the open pores in porous
materials.45) Additionally, sound is absorbed by the
disturbance of the movement of air. The absorption
of sound in a porous material is mainly due to the
consumption of sound energy by the viscosity and
thermal conduction when sound is propagating into
the thin tube.

3.4 Thermal conductivity. To use lotus
copper effectively as heat sinks, which is discussed
below, it is important to know its effective thermal
conductivity and to consider the pore effect on heat
flow. There are two typical methods to measure
effective thermal conductivity keff of materials: an
unsteady-state method (e.g., laser-flash method) and
a steady-state method. In the former, the time
change of the temperatures on the front and reverse
sides of the specimen irradiated by a laser-flash is
measured to determine keff. This method is suitable
to measure keff of homogeneous and isotropic solid
materials.46) On the other hand, in the latter method,
a constant temperature on the front and reverse sides
of the specimen is maintained to measure the steady-
state heat flow through the specimen. This method
is suitable to measure keff of inhomogeneous and
anisotropic materials.47) Thus, the steady-state
method has been adopted to measure keff of lotus

metals.48) In measurements using the steady-state
method, the specimen settles between a heater
block and cooling block, and the temperatures at
each block and the specimen are detected by
thermocouples and the temperature gradient is
measured.

The effective thermal conductivity of lotus
copper keff is defined by

q ¼ Q

A
¼ �keffrT ; ½5�

where q is the heat flux from heat flow Q divided
by the heat flowing through cross-sectional area A
in lotus copper and T is the temperature in lotus
copper. The tensor keff is orthorhombic and is
expressed as

keff ¼
keff==

keff?
keff?

0
B@

1
CA: ½6�

Because keff of lotus copper is anisotropic, the parallel
and perpendicular effective thermal conductivities,
keff== and keff?, of lotus copper are defined as the
thermal conductivities for the heat flow parallel and
perpendicular to the pore axis, respectively. Because
the heat flow cross-sectional areas parallel to the pore
axis in lotus copper are proportional to (1 ! p), keff==
is expressed as

keff==

ks
¼ 1� p; ½7�

where ks is the thermal conductivity of nonporous
copper. Behrens49) has derived keff of composite
materials with orthorhombic symmetry. By applying
his equation to the thermal conductivity of lotus
copper, keff? can be expressed as

keff?
ks

¼ ð� þ 1Þ þ pð� � 1Þ
ð� þ 1Þ � pð� � 1Þ ; ½8�

where O (F kp/ks) is the conductivity ratio; that is,
it is the pore conductivity kp divided by material
conductivity ks of lotus copper. Because the thermal
conductivity of the hydrogen gas or air in the pores
of lotus copper is negligible compared to that of the
lotus material, the effective thermal conductivity of
lotus copper is derived by the following equation
where O F 0 in the above equation

keff?
ks

¼ 1� p

1þ p
: ½9�

Han and Cosner50) have performed a numerical
study on keff of fibrous composites using a unit-cell
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approach under a uniform fiber diameter condition.
Because the diameter of lotus copper is distributed
around a certain range, the numerical simulation for
the thermal conductivity perpendicular to the pores
under a nonuniform pore diameter condition was
conducted to verify the applicability of Eq. [9] to
lotus copper.

Figure 15 compares the experimental data and
the results evaluated by the analytical equation in
Eq. [7] for thermal conductivity parallel to the pores.
The experimental data for keff== agrees well with the
analytical results derived from the assumption that
the heat flow through the cross-sectional area parallel
to the pore axis is proportional to (1 ! p). A value of
335W/(mK) for thermal conductivity ks of the lotus
copper material is used for comparison. Figure 15
compares the experimental data and Eq. [9] where
effective thermal conductivity keff? perpendicular to
the pores is lower than that of the parallel ones
(keff==), and is 40% of lotus copper material ks with a
porosity of 40%. The analytical values evaluated by
Eq. [9] is consistent with the experimental data,
indicating that Eq. [9] can be used to predict the
effective thermal conductivity perpendicular to the
pores of lotus copper within an experimental accu-
racy of ’10%. The results show that lotus copper
displays anisotropy of the effective thermal conduc-
tivity. The effective thermal conductivity keff?
perpendicular to the pores is lower than that of
parallel ones (keff==Þ.

4. Various applications of lotus metals

4.1 Heat sinks. In recent years, because the
heat dissipation rates in power devices and high
frequency electronic devices have been increasing,
heat sinks with high heat transfer performances are
necessary to cool these devices. Heat sinks utilizing
microchannels with a channel diameter of several
tens of microns are expected to provide excellent
cooling performances because higher heat transfer
capacities are obtained with smaller channel diame-
ters.51),52) Therefore, a porous material with open
pores is preferable for three-dimensional microchan-
nels due to economical factors and the higher surface
area per unit volume. Various porous materials such
as sintered porous metals, cellular metals, and fibrous
composites have been investigated for heat sink
applications.53) However, heat sinks using such
porous materials have a high pressure drop due to
the complex cooling fluid flow through the pores.

Among described porous materials, a lotus metal
with straight pores is preferable for heat sinks due
to the small pressure drop of the cooling fluid flow-
ing through the pores. Chiba et al. have investi-
gated the heat transfer capacity of a heat sink using
lotus copper for air cooling54) and water cooling.55)

Figures 16(a) and (b) show the experimental appa-
ratuses used to measure the heat transfer capacity
of heat sinks for air cooling and water cooling,
respectively. The heat sink consists of lotus copper
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fins brazed on one side of a copper base plate and a
heating block with a heater soldered to the other side
of the base plate. In Fig. 16(a), cooling air is blown
by a blower into the test duct where the heat sink is
located. In Fig. 16(b), cooling water is circulated by a
circulator pump through a filter and the test duct
where the heat sink is located. Inlet temperature of
the cooling water Ti, temperature of the copper base
plate Tb, and outlet temperature of the cooling water
To are measured by K-type thermocouples. Thus, the
heat transfer capacity by heat transfer hi based on
the base plate area Ab can be evaluated as

hi ¼ Q

AbðTb � TiÞ ½10�

where Q is the heat transfer rate evaluated by
deducting the heat loss through the thermal insulator
around the heater from the heat input.

The heat transfer coefficients hb, which are based
on the base-plate surface area for the heat sink for
air cooling, are measured as a function of the inlet
velocity of the blowing air. Figure 17(a) shows the
results as well as that for conventional groove fins,

which are composed of copper with a 3mm fin gap,
a 1mm fin thickness, and a 20mm fin height. The
prediction54) for a lotus copper heat sink agrees
well with the experimental data, with an accuracy of
’5%. The experimental data for a lotus copper heat
sink with a thickness L F 1mm shows a very large
heat transfer coefficient of 5000W/(m2K) under an
inlet velocity of 1.0m/s, which is 13.2 times higher
than that for conventional groove fins.54)

In lotus copper heat sinks for water cooling, the
heat transfer capacity of three types of heat sinks
have been investigated: one with conventional groove
fins, one with smaller groove fins (microchannels),
and one using lotus copper. Conventional groove
fins have a fin gap of 3mm and a fin thickness of
1mm, whereas the microchannels have a fin gap of
0.5mm and a fin thickness of 0.5mm. Lotus copper
fins have pores with an average diameter of 0.3mm
and a porosity of 39%. The heat transfer capacity of
the conventional groove fin is the only one to be
calculated. As shown in Fig. 17(b), the experimental
data for the lotus copper heat sink exhibits a very
large heat transfer coefficient of 80000W/(m2K)
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under velocity u0 of 0.2m/s, which is 1.7 times higher
than that for the microchannels and 6.5 times higher
than that of the conventional groove fins.55) There-
fore, it is concluded that a lotus copper heat sink
has the most potential for higher power electronic
devices.

4.2 Golf putters and other potential applica-
tions. Lotus copper was commercialized as golf
putters manufactured by Ryobi Corporation in 2002
and Lotus Alloy Company in 2008. Lotus copper was
placed into the putter flame as an inserted material
that shows superior damping capacity. It is said that
one feels a mild touch when the golf ball is hit.

In addition to golf putters, other potential
applications include artificial teeth and machine
tools. Lotus titanium can be utilized to create pores
with diameters of 150–200 µm, and bony tissues
can be grown in these pores to enhance the holding
force. Lotus carbon steel slabs can be used as saddles
for machine tools because lightweight materials with
sufficient stiffness and vibration-damping can reduce
the operating costs by 20%.

5. Conclusion and perspective

This review article summarizes the present
status of research on lotus metals with directionally
elongated pores. Compared to conventional porous
metals with isotropically, almost spherical pores,
lotus metals exhibit peculiar features, which are
derived from the alignment of the long pores, such as
being lightweight and exhibiting superior mechanical
strength as well as vibration-damping. Thus, these
materials have potential as advanced engineering
materials from the viewpoints of materials science
and practical applications.
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