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Involvement of Flt-1 (VEGF receptor-1) in cancer and preeclampsia

By Masabumi SHIBUYA*1,*2,†

(Communicated by Kumao TOYOSHIMA, M.J.A.)

Abstract: We previously isolated a novel tyrosine kinase receptor, Flt-1, now known
as VEGF-receptor (VEGFR)-1. The VEGF–VEGFR system plays a pivotal role in not only
physiological but also pathological angiogenesis. We examined the role of Flt-1 in carcinogenesis
using Flt-1-signal-deficient (Flt-1 TK!/!) mice, and found that this receptor stimulates tumor
growth and metastasis most likely via macrophages, making it an important potential target in the
treatment of cancer. In addition to the full-length receptor, the Flt-1 gene produces a soluble
protein, sFlt-1, an endogenous VEGF-inhibitor. sFlt-1 is expressed in trophoblasts of the placenta
between fetal and maternal blood vessels, suggesting it to be a barrier against extreme VEGF-
signaling. Abnormally high expression of sFlt-1 occurs in most preeclampsia patients, whose main
symptoms are hypertension and proteinurea. In cancer patients, strong suppression of VEGF–
VEGFR by drugs induces similar side effects including hypertension. These results indicate a close
relationship between abnormal VEGF-block and hypertension/proteinurea. sFlt-1 is an attractive
target for the control of preeclampsia.
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Introduction

A closed circulatory system is essential for
supplying oxygen and nutrients to tissues in the
body, and for removing waste and CO2 into the
circulation. In recent decades, the molecular basis of
angiogenesis, the formation of blood vessels, has been
elucidated in detail, and several crucial signaling
systems such as VEGF–VEGFR, EphrinB2–EphB4,
Ang–Tie and Delta–Notch have been extensively
characterized.1),2) Among these, the VEGF–VEGFR
system appears to play a central role in not only
physiological but also pathological angiogenesis
including cancer (Fig. 1).3)–5)

In 1990, we isolated a novel gene encoding a
receptor-type tyrosine kinase with 7 Immunogloblin
(Ig)-like domains in the extracellular domain, and

designated it as Fms-like tyrosine kinase-1 (Flt-1)
because of a distant similarity with the Fms/Kit/
PDGFR (platelet-derived growth factor receptor)
family.6) In 1992, de Vries et al. showed that VEGF
tightly binds and activates Flt-1, indicating Flt-1 to
be a receptor of VEGF (now known as VEGFR-1).7)

Later, two tyrosine kinase receptors (TKRs) homol-
ogous to Flt-1 were isolated, KDR (kinase insert
domain-containing receptor; flk1/fetal-liver kinase
receptor, in mice)/VEGFR-2 and Flt-4/VEGFR-
3.8)–10) VEGF binds and activates Flt-1 (VEGFR-1)
and VEGFR-2, whereas other VEGF family mem-
bers, VEGF-C and VEGF-D, bind and activate
VEGFR-3 for lymphangiogenesis (Fig. 2).10)

Two mRNAs are generated from the Flt-1 gene
in placenta and vascular endothelial cells (VEC), a
long form for the full-length receptor Flt-1 and a
short form for sFlt-1 which carries only the ligand-
binding region.6),11) In the placenta, trophoblasts
expressing flt-1 have much more sFlt-1 than the full-
length Flt-1.12),13) Furthermore, the sFlt-1 protein
was recently reported to be present at abnormally
high levels in the placenta as well as plasma in
preeclampsia patients.14)–16) Major symptoms of
preeclamptic mothers are hypertension and protei-
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Fig. 1. Angiogenesis and lymphangiogenesis in tumor growth. Tumors and host cells in tumor-microenvironments secrete a variety of
angiogenic factors such as VEGF. Newly formed blood vessels as well as lymph vessels are essential not only for tumor growth itself
but also for metastasis to other tissues and lymph nodes.
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Fig. 2. VEGF family and VEGFRs. Except for fish, vertebrates utilize three VEGF-receptor genes and their ligands for angiogenesis and
lymphangiogenesis. VEGF (also known as VEGF-A), the major ligand for angiogenesis, activates two tyrosine kinase receptors, Flt-1
and VEGFR-2. VEGF-C/D stimulates lymphangiogenesis via VEGFR-3. One subtype, VEGF165, binds Neuropilin-1 (Nrp-1) and
generates stronger angiogenic signals than other subtypes. However, a variant form of VEGF165, named VEGF165b, is suggested to be
a negative regulator of the VEGF system.
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nurea, suggesting a close relationship between these
symptoms and an abnormal increase in sFlt-1, an
endogenous VEGF-trapping molecule.

In adults, VEGF and VEGFRs are deeply
involved in tumor angiogenesis and inflammatory
diseases such as rheumatoid arthritis (RA), and new
medicines molecularly targeting this system such
as VEGF-neutralizing antibody are widely used for
the treatment of various solid tumors.17),18) To our
surprise, these VEGF–VEGFR inhibitors can
cause hypertension and proteinurea, indicating a
similarity between preeclamptic symptoms and
side effects of artificial VEGF–VEGFR inhibitors
(Fig. 3).

Part 1 of this paper describes the VEGF–
VEGFR system, unique characteristics of Flt-1, and
involvement of Flt-1 in diseases, and Part 2, a close
relationship of sFlt-1 with preeclampsia.

Part 1

1. Angiogenesis and the VEGF–VEGFR
system. a. Major biological effects of VEGF. VEGF
(also known as VEGF-A) has a homodimeric
structure distantly related to the PDGF family with
representative monomeric subtypes of 121, 165, and
189-amino acids in humans.3) VEGF stimulates
proliferation, migration, survival and the formation
of tubular structures in vascular endothelial cells
(VECs) as well as migration in macrophage-lineage

cells.3),4),19),20) Furthermore, VEGF stimulates vascu-
lar permeability in vivo, thus, it was originally
isolated as a vascular permeability factor (VPF).21)

Genetic studies clearly indicate VEGF–
VEGFRs to be essential in vasculogenesis and
angiogenesis in embryos. Even the knockout of a
single allele (heterozygotic knockout) of the VEGF
gene caused death in mice at E11–12 due to impaired
angiogenesis and blood-island formation,22),23) show-
ing that the local concentration of VEGF in
embryonal tissues is tightly regulated for normal
development of the circulatory system. Homozygous
knockout of any VEGFR gene (flt-1, flk-1 and flt-4)
is lethal due to abnormal vascularization in the
embryo.24)–26)

A two-dimensional coculture system using
HUVECs (human umbilical vein endothelial cells)
and human fibroblasts clearly showed that VEGF
plays a central role in angiogenesis in vitro since
VEGF-blocking agents such as sFlt-1 and an anti-
VEGF neutralizing antibody significantly suppressed
angiogenesis and tubular formation even in the
presence of other angiogenic factors such as FGF,
HGF and Ang-1.27)

b. VEGFR-2: a major transducer of angiogenic
signals. Flt-1 (VEGFR-1) and VEGFR-2 have
interesting differences at the biochemical level. Flt-1
binds strongly to VEGF (Kd F 1–10 pM), but its
kinase activity is about one order of magnitude

Phase III Clinical trial with anti-VEGF neutralizing 
antibody (bevacizumab) (2004, ref. 17) 

Stage-3,-4 colorectal cancer:  randomized trial (400 Patients x 2)

Chemotherapy    ±    anti-VEGF Ab

av. Survival time : -Ab, 15.6M;  +Ab, 20.3M

side effects                                       survival rate -Ab

hypertension, proteinurea, etc.

survival time

cf. Similar effects on survival rate in lung cancer (non SCLC, 
nonsquamous type) etc. (’09, approved for malignant glioma.)

Multi TK-inhibitors: approved for renal and hepatic cancer.

+Ab

Fig. 3. Anti-VEGF therapy results in a great effect on the overall survival (OS) of cancer patients with some side effects such as
hypertension. Schematic representation: Phase-III clinical trial of bevacizumab (anti-VEGF neutralizing antibody) in combination
with chemotherapy demonstrated a significant improvement in the survival of late-stage colorectal cancer patients. Frequent side
effects were hypertension and proteiurea.
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weaker than that of VEGFR-2.3),28) On the other
hand, the tyrosine kinase of VEGFR-2 is as strong
as that of other TKRs, however, its ability to bind
VEGF is about 10-fold lower than that of Flt-1.
These results indicate that VEGFR-2 is the major
transducer of angiogenic signals and Flt-1 plays a
regulatory role.

Structurally, Flt-1, VEGFR-2, and VEGFR-3
(7-Ig domain-containing tyrosine kinase receptors/
7Ig-TKRs), are highly homologous to the Fms/
Kit/PDGFR family (5Ig-TKRs).4) These two TKR
families share an Ig-domain-based ligand-binding
domain and a TK domain with a long kinase insert
(KI) of about 70 amino acids. In the KI region, 5Ig-
TKRs carry Tyr(Y)-x-x-Met(M) motifs which are the
binding site of the PI3K-p85 subunit and crucial for
the activation of the PI3K–Ras pathway.29) How-
ever, none of the VEGFRs contain a Y-x-x-M motif,
strongly suggesting that the major signaling pathway
from VEGFRs is different from that of 5Ig-TKRs.
We clearly demonstrated that VEGFR-2, the major
signal transducer of VEGF, activates a PLC.–PKC–
MAPK pathway leading to VEC proliferation.30)

Activation of the PI3K and Ras pathways via
VEGFR-2 appears to be minor.

Furthermore, we showed that a single autophos-
phorylation site in human VEGFR-2, 1175-Tyrosine
(Y), is the major binding and activation site for
PLC..31) The corresponding tyrosine residue in
mouse VEGFR-2, 1173-Y, is essential since a point
mutation at this Y to phenylalanine (F) in mice
(1173-F/F mutant mouse) caused death due to a lack
of vasculogenesis similar to the knockout of VEGFR-
2 (flk-1!/! mice).32) Xiong et al. recently found that
1175-Y is crucial for another function of VEGF, the
release of von Willebrand factor (vWF) from VECs
to regulate the blood coagulation system.33) On the
other hand, Matsumoto et al. reported that 951-Y in
human VEGFR-2 is important for migration-signal-
ing in VECs.34)

2. Flt-1 tyrosine kinase and sFlt-1: their
genomic structure, phylogeny, and involvement
in the progression of cancer and rheumatoid
arthritis. a. two gene products: Flt-1 and sFlt-1.
When we isolated the flt-1 cDNA as a novel 7Ig-
TKR, we observed that normal human placenta
expresses not only the full-length flt-1 mRNA of
about 8 kb but also a short form of about 3 kb at high
level possibly encoding the ligand-binding domain.6)

Several groups clarified that this short flt-1 mRNA is
derived from alternative splicing, and encodes for the
1st to 6th Ig-regions with a 31-amino acid tail derived

from an intron (Fig. 4).11),35) We and others demon-
strated that the mammalian flt-1 gene consists of
30 exons, and sFlt-1 is derived from the 1st to 13th
exons with an intron-13-derived tail. This short form
of the mRNA is generated by premature polyadeny-
lation within intron-13.35),36)

b. Phylogenetical importance of sFlt-1 in animals: a
hypothesis. sFlt-1 is expressed at significant levels
in the placenta, particularly in the trophoblast
layer.6),12),13) The trophoblast layer is located be-
tween the fetal and maternal blood vessel systems,
both of which are mainly regulated by the VEGF–
VEGFR system. If VEGF-signaling exceeds physio-
logical levels, blood vessels at fetal and maternal
sites may sprout and fuse. Even if such fusion was
mechanically blocked by tissue matrix molecules,
overexpression of VEGF may induce vascular hyper-
permeability with a leak of serum proteins, resulting
in protein–protein communication between the fetus
and mother. These conditions appear to be very
dangerous to a pregnancy, thus, it is likely that sFlt-1
acts as important barrier to suppress over-signaling
of VEGF–VEGFR in the placenta by trapping excess
VEGF. sFlt-1 might therefore have been useful to the
phylogenetic development and maintenance of the
placental system in mammalian species.

These observations suggest that only mammals
express the sFlt-1 mRNA and protein. However,
to our surprise, the chicken flt-1 gene also encoded
two mRNAs and two products, Flt-1 and sFlt-1.37)

Furthermore, the chicken sFlt-1 tail, derived from
an intron, is highly similar to the mammalian sFlt-1
tail, in both the length (31aa) and the homology
of the amino acid sequence (Fig. 4). This strongly
suggests that the tail region of sFlt-1 bears some
biological role such as associating with other pro-
teins, for example, the full-length Flt-1 receptor.38)

Furthermore, genome-wide sequencing indicates
that amphibians also express sFlt-1 mRNA similar
to mammals and birds. However, fish do not have
sFlt-1 mRNA: Zebrafish was reported to contain four
VEGFR genes different from other vertebrates which
carry three genes. Therefore, the sFlt-1 mRNA
system was most likely established at a very early
stage of phylogenetic development in vertebrates,
which was between the stages of fish and amphy-
bians.

c. Dual role of Flt-1 in angiogenesis: a negative role
in early embryogenesis, and a positive role in cancer
and other diseases. Fong et al. reported that flt-1
knockout mice died at E8.5 to 9.0 due to excessive
and poorly organized growth of blood vessels. This
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indicates that Flt-1 plays a negative role in the
formation of blood vessels in early embryogenesis.25)

To clarify the role of Flt-1; whether its weak kinase
activity generates a negative signal for VECs or its
tight ligand-binding domain traps VEGF and de-
creases the concentration of VEGF to an appropriate
level, we generated Flt-1-signal deficient mice which
lack the tyrosine kinase domain of Flt-1.38) The
Flt-1 TK!/! mice were basically healthy with well
organized physiological angiogenesis although the
VEGF-dependent migration of macrophages was
impaired (Fig. 5). This indicates that the negative
role of Flt-1 in early embryognesis is derived from its
strong binding and neutralization of VEGF via the
ligand-binding domain.

Since Flt-1 TK!/!mice are defective only in Flt-
1 signaling, they are useful for analyzing Flt-1 signal in
models of cancer and rheumatoid arthritis (RA) etc.
Using these mice, we and others demonstrated that
the growth of subcutaneously transplanted cancer
cells or intracerebrally inoculated gliomas was slower
in Flt-1 TK!/! mice or in wild-type mice carrying
Flt-1 TK!/! bone marrow, than in wild-type mice
(Fig. 6).39),40) Furthermore, pulmonary metastasis of
carcinoma cells was significantly suppressed in Flt-1
TK!/! mice or anti-Flt-1 antibody-treated mice
compared with wild-type mice.41),42)

In addition, a mouse model of RA revealed
a milder phenotype for the Flt-1 TK!/! genetic
background.43) Symptoms in a murine model of
ocular angiogenesis were also suppressed in Flt-1
TK!/! mice.44) These results clearly indicate that
not only VEGFR-2 but also Flt-1 plays an important
role in the progress of various diseases including
cancer, and is a crucial target for treatment.

Furthermore, Flt-1 is involved in bone marrow
reconstitution under certain conditions. M-CSF-
deficient mice (op/op mice) are known to show
osteopetrosis, but recover in a VEGF–VEGFR-
dependent manner. When the Flt-1 TK!/! muta-
tion was introduced into op/op mice, the reconstitu-
tion of bone marrow in [op/op, Flt-1 TK!/!] mice
was strongly suppressed, resulting in bone marrow
fibrosis.45)

3. Cancer therapy with anti-VEGF–VEGFR
agents. The VEGF–VEGFR system appears to
be an important target for suppressing pathological
angiogenesis, particularly tumor angiogenesis. Con-
sequently, the anti-VEGF neutralizing antibody
bevacizumab and multi-TK inhibitors such as
sorafenib and sunitinib have been developed for
cancer therapy.17) These anti-VEGF–VEGFR agents
are widely used in the treatment of cancer. Bevaci-
zumab is used for colorectal cancer, lung cancer (non-
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squamous and non-small cell lung cancer), breast
cancer and gliomas. Sunibinib and sorafenib are used
for renal and hepatic cancer. In most cases, these
agents improve not only progression-free survival
(PFS) but also overall survival. It is of surprise that
frequent side effects of these anti-VEGF–VEGFR
agents are hypertension and proteinurea, the major
symptoms of preeclampsia.

Part 2

1. Abnormal expression of sFlt-1 and pre-
eclampsia. Preeclampsia is a major disease in
the field of obstetrics, and occurs in about 5% of
pregnancies. Preeclampsia causes hypertension, pro-
teinurea, and renal dysfunction on the maternal
side, and growth retardation on the fetal side, often
resulting in the artificial termination of a pregnancy
by the Cesarean section.46),47) Viral or bacterial
infections, stress, and decreased circulation in the
placenta have all been implicated. Among them, poor
circulation in the placenta is a likely cause since
an animal model called RUPP (reduced uterine
perfusion pressure) mimics partly the symptoms
of preeclampsia such as hypertension.48) After the
placing of clamps to block major arteries towards
the uterus in pregnant rats (at 14 days of gestation),
systolic blood pressure was reported to increase from
100mmHg (control) to 130mmHg.

These results suggest the existence of some anti-
angiogenic molecule(s) in preeclampsia patients. We
and others previously showed that placental tissue
highly expresses an endogenous VEGF-neutralizing
molecule, sFlt-1, at the mRNA and protein level.6),49)

Also, Clark et al. indicated that anti-VEGF activity
was produced by the human placenta and released
into the maternal circulation.50) In 2003, Koga et al.
and Maynard et al. reported that sFlt-1 levels were
abnormally high in the plasma of preeclampsia
patients.14),15) Furthermore, Maynard et al. demon-
strated that the exogenous expression of sFlt-1 by
adeno-viral vector in normal pregnant rats induced
hypertension, proteinurea, and glomerular endothe-
liosis, the classic symptoms of preeclampsia.14) In
2004, Levine et al. examined in detail the time course
of the increase in plasma sFlt-1 levels, and found a
close relationship between the plasma levels of sFlt-1
and the degree of preeclampsia (Fig. 7).16) Also, they
showed that the patients affected had increased
plasma sFlt-1 levels early in pregnancy, without
any detectable signs of preeclampsia. These results
strongly suggest that (1) an abnormal increase in the
endogenous VEGF-inhibitor sFlt-1 induces at least

partly the major symptoms of preeclampsia, and (2)
abnormal gene expression of sFlt-1 is initiated at a
very early phase of pregnancy prior to the occurrence
of preeclamptic symptoms. The question of how the
gene expression of sFlt-1 is regulated remains to be
answered.

2. Structure of sFlt-1 and regulation of its
gene expression. As shown in Fig. 4, sFlt-1 mRNA
consists of the sequence derived from exon-1 to 13
as well as the 5′-region of intron-13. The amino
acid sequence derived from exon-1 to 13 encodes
for the 1-6Ig domains, and thus, has high affinity
for VEGF. Even after proteolytic cleavage, the
1-3Ig or 1-4Ig domains still maintained high affinity
for the ligand. The peptides carrying 1-4Ig or a
longer portion bound VEGF as a dimer (two
molecules on both sides of VEGF), whereas the
1-3Ig peptide bound as a monomer (one molecule
on one side).51) These findings indicate that sFlt-1
fragments, after cleavage, maintain the ability to
block VEGF.

sFlt-1 is expressed in vascular endothelial cells,
monocyte–macrophage-lineage cells, placental troph-
oblasts and hypoxia-stressed smooth muscle
cells.4),52) 293 cells, BeWo cells (thought to be derived
from trophoblasts) and tumor cells such as breast
cancer cells also express sFlt-1.6),53),54) Most of these
cells express Flt-1 and sFlt-1 at a ratio of about 1:1,
however, trophoblasts and BeWo cells express
several-fold more sFlt-1 than the full-length Flt-1.
The reason why the sFlt-1 level is higher in
trophoblasts or trophoblast-derived cancer cells is
still not fully understood.

To synthesize a large amount of sFlt-1 mRNA,
high transcriptional activity and efficient polyadeny-
lation within the intron-13 are critical. In terms of
transcriptional regulation, we found that one CREB
(cyclic AMP-responsive element-binding) motif and
one ETS motif at position !51 to !83 upstream from
the flt-1 transcriptional initiation site are essential
(Fig. 4).55) Mutation of either motif suppressed the
expression of flt-1 in 293 cells. Furthermore, Clauss
et al. reported that the activation of macrophages
using LPS upregulated flt-1 expression,20) and
Barleon et al. showed that stimulation of VEC
with VEGF increased flt-1 expression.56) In addition,
Nagamatsu et al. demonstrated that hypoxic stress
is an important inducer of Flt-1 in cultured
cytotrophoblast cells.57) Taken together, the flt-1
gene is transcriptionally regulated by a basic system
(CREB–ETS), a growth factor such as VEGF, a
cellular activation factor (LPS), and hypoxic stress.
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The molecular basis of the second factor for
the generation of sFlt-1, premature termination of
the mRNA within intron-13, however, is largely
unknown. Trophoblasts or related cells may have
special machinery with protein complexes to suppress

the splicing at intron-13 or to facilitate polyadeny-
lation within the intron.58)

The amounts of total and free forms of sFlt-1,
the ligand VEGF, and PlGF (placenta growth factor)
in plasma need to be measured more carefully at
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Fig. 8. A possible procedure to control the level of sFlt-1 in preeclampsia patients. Abnormal increases in sFlt-1 could be suppressed by
1) an inhibitor of transcription factor(s) for flt-1 expression, 2) removal or a functional block of sFlt-1,59) and 3) the supply of a VEGF-
like molecule which is not trapped by sFlt-1. However, such agents should be carefully examined for effects on the fetus under the
stress of preeclampsia.
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Fig. 7. The abnormal increase in sFlt-1 is an important cause of preeclampsia. Trophoblasts in the placenta are located between fetal
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abnormal increase in sFlt-1 is induced under various conditions, resulting in symptoms of preeclampsia such as hypertension and
proteinurea in association with an increase in sEndoglin, a TGFO family member. Two red “T-shaped” bars in placenta indicate
schematic blood vessel networks from fetus (left) and from mother (right).
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different points in a pregnancy. This information
should be useful for evaluating the degree of
preeclampsia, and anticipating the course of the
disease. An excess amount of sFlt-1 may be an
appropriate target for the treatment of preeclampsia
in the near future (Fig. 8), and such an attempt has
recently been reported.59)

Conclusions

The Flt-1 gene is unique in terms of its
processing, producing (1) a positive signal transducer,
the full-length TKR Flt-1 (VEGFR-1), and (2) an
endogenous negative regulator of angiogenesis, sFlt-1.
The closed circulatory system in vertebrates is
essential, and closely linked to several major human
diseases. Further study of regulatory systems such as
VEGF–VEGFR, Ang–Tie, and Delta–Notch is nec-
essary to better understand the circulatory system,
and develop medications with fewer side effects.
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