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Abstract: We examined intracellular pH (pHi) of ten cancer cell lines derived from different
organs and two normal cell lines including human embryonic lung fibroblast cells (HEL) and human
umbilical vein endothelial cells (HUVEC) in vitro, and found that pHi of most of these cancer cells
was evidently higher (pH 7.5 to 7.7) than that of normal cells (7.32 and 7.44 for HEL and HUVEC,
respectively) and that of primary leukemic cells and erythrocytes hitherto reported (57.2). Higher
pHi in these cancer cells could be related to the Warburg effect in cancer cells with enhanced
glycolytic metabolism. Since reversal of the Warburg effect may perturb intracellular homeostasis in
cancer cells, we looked for compounds that cause extensive reduction of pHi, a major regulator of the
glycolytic pathway and its associated metabolic pathway. We found that phenoxazine compounds,
2-aminophenoxazine-3-one (Phx-3) and 2-amino-4,4,-dihydro-4,,7-dimethyl-3H-phenoxazine-3-
one (Phx-1) caused a rapid and drastic dose-dependent decrease of pHi in ten different cancer
cells within 30min, though the extent of the decrease of pHi was significantly larger for Phx-3
("pHi F 0.6 pH units or more for 100 µM Phx-3) than for Phx-1 ("pHi F 0.1 pH units or more for
100 µM Phx-1). This rapid and drastic decrease of pHi in a variety of cancer cells caused by Phx-3
and Phx-1 possibly perturbed their intracellular homeostasis, and extensively affected the
subsequent cell death, because these phenoxazines exerted dose-dependent proapoptotic and
cytotoxic effects on these cells during 72 h incubation, confirming a causal relationship between
"pHi and cytotoxic effects due to Phx-3 and Phx-1. Phx-3 and Phx-1 also reduced pHi of normal
cells including HEL and HUVEC, although they exerted less proapoptotic and cytotoxic effects on
these cells than on cancer cells. Drugs such as Phx-3 and Phx-1 that reduce pHi and thereby induce
cellular apoptosis might serve as benevolent anticancer drugs.
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Introduction

Since cancer cells actively proliferate, it is
reasonable that aerobic metabolism including tricar-
bonic acid cycle producing much amounts of ATP,
may be enhanced. Despite this expectation, cancer

cells incorporate more glucose, and prefer glycolysis,
an anaerobic metabolic pathway, even in the
presence of ample oxygen. This paradoxical behavior
of cancer cells with enhanced glycolysis is known as
the Warburg effect.1) However, the actual cause of
the Warburg effect of cancer cells is still unknown,2)

though this characteristic behavior of cancer cells has
been practically applied for detecting tumors by
fluorodeoxyglucose positron emission tomography
(FDG-PET),2) and more recently has attracted much
attention in terms of cancer therapy targeting the
inhibition of this fragile energy metabolism.3),4)

Another feature of tumors is that the extra-
cellular pH (pHe) is extremely acidified and intra-
cellular pH (pHi) is relatively high in the regions
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of the solid tumors.5),6) According to the classical
Donnan’s membrane equilibrium, pHi in cancer cells
may decrease as extracellular pH of these cells
decreases. Actually, the pHi of human erythrocytes
decreases according to the acidification of extra-
cellular medium.7),8) However, in cancer cells, pHi is
not decreased to the expected level, in spite of the
acidification of extracellular pH,9),10) suggesting that
the existence of a regulating system that maintains
a higher pH in the cells. Later, NaD/HD exchanger
isoform 1 (NHE1) in the plasma membrane was
found to be responsible for regulating pHi in cancer
cells and for keeping pHi higher.11),12) Some reports
indicated that pHi increased in several species of
cancer cells,13)–16) though general agreements on the
elevation of pHi in cancer cells has not been achieved.
Recently, Che et al.17) demonstrated that pHi in KB-
3-1 cells (human epidermoid carcinoma cell line:
pHi F 7.65) and K562 cells (human chronic myeloid
leukemia cell line: pHi F 7.8) was much higher than
that in intact normal cells (generally, pHi 5 7.2).
This alkalinization of pHi in cancer cells may be
beneficial for maintaining homeostasis in these cells,
which depends primarily on the energy metabolism
delivered from glycolysis, as compared with normal
cells.

Therefore, the drugs used to reduce pHi in
cancer cells may possibly be useful in cancer therapy
because intracellular acidification is associated not
only with inhibition of the glycolytic pathways, but
also with activation of the apoptotic events in cancer
cells,15),16),18) while a higher pHi enhances the glyco-
lytic metabolism and proliferation of these cells.19) In
this context, phenoxazines such as 2-aminophenox-
azine-3-one (Phx-3) and 2-amino-4,4,-dihydro-4,,7-
dimethyl-3H-phenoxazine-3-one (Phx-1), which are
prepared by reacting bovine hemoglobin with o-
aminophenol or 2-amino-5-methylphenol20),21) may
be most likely candidates for treating cancer because
they are known to both decrease the pHi of a few
cancer cell lines17) and cause apoptosis of these
cells.22)–27) However, there has been no systematic
investigation of the causal relationship between pHi
decrease and apoptotic events in cancer cells induced
by Phx-3 and Phx-1.

In this manuscript, we first studied the pHi of
ten human cancer cell lines derived from different
organs and two normal cell lines including human
embryonic lung fibroblast cells (HEL) and human
umbilical vein endothelial cells (HUVEC) in vitro,
in order to see whether pHi, a critical factor in
regulating intracellular metabolism including glycol-

ysis, might be elevated in cancer cells, since the
Warburg effects could be explained by the elevation
of pHi in the cells. Second we examined the effects of
the oxidative phenoxazines such as Phx-3 and Phx-1
on pHi change, apoptosis induction, and the viability
of these cells, seeking for a plausible mechanism for
the anticancer effects of these phenoxazines, and for
benevolent anticancer drugs in general.

Materials and methods

Phx-3 and Phx-1. For this study, Phx-3
and Phx-1 were prepared by the reaction of bovine
hemoglobin with o-aminophenol and 2-amino-5-
methylphenol, respectively, as described by Shimizu
et al.20) and Tomoda et al.21) The chemical structure
of Phx-3 and Phx-1 is depicted in Fig. 1. Phx-3 and
Phx-1 were dissolved in a mixture of dimethylsulf-
oxide (DMSO) and ethyl alcohol (3:1) as a vehicle to
make 20mM solution.

Cell line and culture condition. Human
breast cancer cell line MCF-7, human epidermoid
carcinoma cell line A431, cisplatin-resistant cell line
KCP-4 derived from KB-3-1 human epidermoid
cancer cells, human lung adenocarcinoma cell line
A549, human pancreatic cancer cell line KLM-1 and
MIA PaCa-2, human renal carcinoma cell line ACHN,
human colon adenocarcinoma cell line LoVo-1 and
human glioblastoma cell line U251MG were cultured
in DMEM (Nissui Seiyaku Co., Tokyo) supplemented
with 10% fetal calf serum (Equitech-Bio, Kerrville,
TX), 2mM glutamine, and 100 units/ml of penicillin.
Human retinoblastoma cell line Y-79 was cultured in
RPMI 1640 supplemented with 10% fetal calf serum,
2mM glutamine, and 100 units/ml of penicillin.
Human lung embryonic fibroblast cell line HEL was
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Fig. 1. Chemical structure of Phx-3 (A) and Phx-1 (B).
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cultured in FBM supplemented with hFGF-O, insulin,
2% FBS. Human umbilical vein endothelial cells
(HUVEC) were cultured in EBM-2 supplemented
with hydrocortisone, hFGF-O, VEGF, IGF-1, ascor-
bic acid, hEGF, heparin and 2% FBS. All the cells
were cultured at 37 °C in a 5% CO2 humidified
atmosphere.

Influence of Phx-1 and Phx-3 on the pHi in a
variety of cancer cells and normal cells (HEL and
HUVEC). For a variety of cancer cells (MCF-7,
A431, KCP-4, A549, KLM-1, MIA PaCa-2, ACHN,
LoVo-1, U251MG and Y-79) and normal cells (HEL
and HUVEC), pHi was determined according to the
method described by Litman et al.14) Briefly, the cells
(4 # 107/ml) were loaded with a pH-sensitive fluo-
rescent probe BCECF-AM (3µM) (Dojin Chemical,
Kumamoto, Japan) in HEPES buffer (153mM NaCl,
5mM KCl, 5mM glucose, 20mM HEPES, pH 7.4)
at 37 °C for 30min. After being washed once with
HEPES buffer, the cells were resuspended in HEPES
buffer. The cells (3 # 106) were treated with 0, 5, 10,
20, 50 and 100 µM Phx-3 for 20min. Fluorescence
was measured at an excitation wavelength of 500 nm
and an emission wavelength of 530 nm, using a
FP750 microplate fluorescence reader (Jasco Co.
Ltd., Tokyo). To calibrate fluorescence, BCECF-
AM-loaded cells (3 # 106) were suspended in pH 6.6,
7.0, 7.4, 7.8 and 8.2 calibration buffer (130mM KCl,
10mM NaCl, 1mM MgSO4, 10mM Na-MOPS) and
10 µg/ml nigericin was added to equilibrate the
external and internal pH. The relative fluorescence
ratio values were plotted against corresponding pHi
values, in order to determine the unknown pHi. A
linear calibration curve for pHi was obtained (data
not shown): the optical density of the solution
including BCECF-AM increased linearly with an
increase of the pH. Therefore, it was possible to
estimate the pHi of cells loaded with BCECF-AM.

Detection of the loss of mitochondrial mem-
brane potential in a variety of cancer cells and
normal cells (HEL and HUVEC). Reduced
mitochondrial membrane potential is considered as
initial and irreversible step towards apoptosis. There-
fore, the loss of mitochondrial membrane potential of
ten cancer cells (MCF-7, A431, KCP-4, A549, KLM-1,
MIA PaCa-2, ACHN, LoVo-1, U251MG and Y-79)
and two normal cells (HEL and HUVEC) treated with
Phx-3 was examined by 5,5′,6,6′-tetrachloro-1,1′,3,3′-
tetraethylbenzimidazolylcarbocyanine iodide (JC-1)
in order to detect the apoptosis of these cells. The cells
(2 # 105) were seeded in 12-well plates and treated
with 0, 7 and 14 µM Phx-3 for 3, 6 and 9h. The cells

were then rinsed twice with PBS, then stained with
1ml RPMI-1640 or DMEM medium containing
5 µmol/L JC-1 (Molecular Probes, USA) for 30min
at 37 °C. Cells were then rinsed twice with ice-
cold PBS, resuspended in 1ml ice-cooled PBS, and
instantly assessed for red and green fluorescence using
a Coulter FACSCAN (Becton Dickinson, San Jose,
CA). A 488 nm filter was used for the excitation of
JC-1. An emission filter of 535 nm was used to
quantify the population of mitochondria with green
(JC-1 monomers) fluorescence and an emission filter
of 595 nm was used to quantify the population of
mitochondria with red (JC-1 aggregates) fluorescence.
The decrease of orange fluorescence (FL-2) was
analyzed to estimate the population of the early
apoptotic cells which lost the mitochondrial mem-
brane potentials.

Estimation of viability of a variety of cancer
cells and normal cells (HEL and HUVEC) treated
with different concentrations of Phx-3 or Phx-1.
Ten different cancer cells (MCF-7, A431, KCP-4,
A549, KLM-1, MIA PaCa-2, ACHN, LoVo-1,
U251MG and Y-79) and two normal cells (HEL
and HUVEC) (3,000/ml) were incubated with or
without various concentrations of Phx-3 or Phx-1 for
72 h in 96-well plates. Next, 3-(4,5-dimethyl-thiazol-
yl-2)-2,5-diphenyltetrazolium bromide (MTT) solu-
tion (5mg/ml) was added to each well, and the
cells were incubated for an additional 4 h. The
MTT formazan precipitate was dissolved in 100 µl
of DMSO after removal of the culture medium by
aspiration. The plates were shaken for 5min and read
immediately at 570 nm using a model 550 Micro Plate
Reader (Bio-Rad, Hercules, CA).

Data analysis. Student’s t-test was used to
compare the values for the population of apoptotic
cells. The p-value of <0.01 and <0.001 was consid-
ered to be statistically significant (Figs. 3A and 3B).
Statistical analysis for Fig. 5 was performed by
regression analysis.

Results

Effects of Phx-3 or Phx-1 on pHi in human
breast cancer cell line MCF-7 and human skin
cancer cell line A431. We found that the pHi in
human breast cancer cell line, MCF-7 was as high as
7.62. During 30min incubation of MCF-7 cells, no
changes in pHi were indicated in the cells without
treatment with Phx-3 or Phx-1. However, the pHi in
the cells decreased from 7.62 to 6.57, within several
minutes after the addition of 100 µM Phx-3. When
100 µM Phx-1 was added to MCF-7 cells, pHi (initial
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pHi F 7.53) was gradually decreased to 6.94 within
30min (the data not shown).

Thus, we studied the changes in the pHi in
MCF-7 cells 30min after the addition of different
concentrations (0, 5, 10 20, 50 and 100 µM) of Phx-3
or Phx-1 (Figs. 2A and 2B). Treatment with Phx-3
decreased the pHi in MCF-7 cells in a dose-dependent
manner (Fig. 2A). Though the effects of Phx-1 on the
decrease of pHi in MCF-7 cells were weaker than
those of Phx-3, the decrease of pHi was obviously
indicated in the cells with 20 µM or more Phx-1
(Fig. 2B).

Furthermore, we examined the effects of differ-
ent concentrations of Phx-3 or Phx-1 on human skin
cancer cell line, A431 (Figs. 2C and 2D). During
30min incubation of A431 cells with Phx-3, pHi in
the cells was dose-dependently decreased by Phx-3

(Fig. 2C). The pHi in A431 cells whose initial pHi
was 7.5 remained at 7.5 during 30min in the absence
of Phx-3, but it decreased to 6.86, 30min after the
addition of 100 µM Phx-3. With regard to Phx-1, pHi
(initial pHi F 7.56) in A431 cells was not affected by
50 µM Phx-1, but was reduced to 7.37 by adding
100 µM Phx-1 (Fig. 2D), demonstrating that Phx-1
has less capacity of reducing pHi in A431 cells than
Phx-3.

Effects of Phx-3 or Phx-1 on pHi in a variety
of cancer cell lines and normal cell lines (HEL and
HUVEC). We examined pHi in 10 cancer cell lines
(MCF-7, A431, KCP-4, A549, KLM-1, MIA PaCa-2,
ACHN, LoVo-1, U251MG and Y-79) derived from
the different organs and two normal cell lines (HEL
and HUVEC), in order to see whether higher pHi in
cancer cells and pHi decrease caused by Phx-3 and

6

6.5

7

7.5

8

0 5 10 20 50 100

pH

Phx-3  (μM)

pH

Phx-1  (μM)

6

6.5

7

7.5

8

0 5 10 20 50 100

A. B.

6

6.5

7

7.5

8

0 5 10 20 50 100

pH

Phx-3 (μM)

6

6.5

7

7.5

8

0 5 10 20 50 100

pH

Phx-1 (μM)

C. D.

Fig. 2. Changes in pHi in MCF-7 and A431 cells treated with different concentrations of Phx-3 or Phx-1. Human breast cancer cell line
MCF-7 and human epidermoid carcinoma cell line A431 were incubated with or without different concentrations of Phx-3 or Phx-1 (5,
10, 20, 50, and 100µM) at 37 °C for 30min, in order to examine changes in pHi in the cells. A. Effects of Phx-3 on pHi in MCF-7 cells;
B. Effects of Phx-1 on pHi in MCF-7 cells; C. Effects of Phx-3 on pHi in A431 cells; D. Effects of Phx-1 on pHi in A431 cells.
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Phx-1 as seen in MCF-7 and A431 cells, might be
commonly occurring, and to see the level of pHi
in the cultured normal cells, HEL and HUVEC in
the presence or absence of these phenoxazines. We
therefore examined the initial pHi in these cells
without addition of Phx-3 and Phx-1, and then the
reduction of pHi in these cells during 30min
incubation with 20 µM or 100 µM Phx-3 or Phx-1
(Tables 1 and 2).

Table 1 summarizes the pHi of these cells before
or 30min after the addition of 20 or 100 µM Phx-3,
and "pHi (the differences in pHi without and with
Phx-3). Results indicate that pHi in all the cancer
cells (MCF-7, A431, KCP-4, A549, KLM-1, ACHN,
LoVo-1, U251MG and Y-79) except for human
pancreatic cancer cell line MIA PaCa-2 (pHi F 7.29),
was maintained between 7.46 and 7.67, being
extensively higher than that in normal cell lines
HEL and HUVEC (7.32 and 7.44) or the hitherto
reported pHi for the hematopoietic cells such
as peripheral blood mononuclear cells and bone
marrow mononuclear cells (pHi 5 7.1)28) and eryth-
rocytes8),29) (pHi 5 7.2).

Such higher pHi in cancer cells was reduced to
the range below 7.0 within 30min, when these cells
were treated with 100 µM Phx-3 (Table 1). The pHi

decrease ("pHi) ranged from 0.22 to 1.00 and from
0.64 to 1.20 pH units in every cancer cells with 20 µM
and 100 µM Phx-3, respectively. When these cells
were treated with 20 or 100 µM Phx-1 (Table 2), the
extent of pHi decrease was much smaller compared
with the case with Phx-3, and the "pHi ranged
between 0.01 to 0.16 and 0.11 and 0.59 pH units for
20 µM and 100 µM Phx-1, respectively.

With regard to two normal cell lines HEL and
HUVEC, Phx-3 and Phx-1 caused significant de-
crease of pHi, whose extents were comparable to
those in cancer cells (Tables 1 and 2).

Proapoptotic effects of Phx-3 or Phx-1 on
MCF-7 and A431 cells detected by the loss of
mitochondrial membrane potentials. In order to
see whether rapid and drastic changes in pHi in
MCF-7 and A431 cells caused by Phx-3 (Figs. 2A
and 2C) might be associated with the onset of cellular
apoptosis, we studied the effects of different concen-
trations of Phx-3 (0, 7 and 14 µM) on the mitochon-
drial membrane potential of these cells during 3, 6
and 9 h incubation at 37 °C. The population of
apoptotic cells detected by the decreased mitochon-
drial potential was increased as a function of time (3,
6, and 9 h), and dependent on the concentration of
Phx-3 (7 and 14 µM) (Fig. 3A). Apoptosis induced

Table 1. Changes in pHi of various species of cancer cells
and normal cells (HEL and HUVEC) caused by 20 and 100µM
Phx-3. The pHi of various species of cancer cells and normal cells
including human embryonic lung fibroblast (HEL) and human
umbilical vein endothelial cells (HUVEC) was examined at
30min without the addition of Phx-3, and 30min after the
addition of 20 or 100 µM Phx-3 (Fig. 2A). "pHi indicates the
difference between pHi at 30min with and without 20 or 100µM
Phx-3. Value in the table is the means of triplicate trials.

Phx-3
0 µM 20µM 100µM

pHi pHi "pHi pHi "pHi

Cancer cell lines

MCF-7 7.62 7.12 0.50 6.57 1.05

A431 7.50 7.28 0.22 6.86 0.64

KCP-4 7.67 7.07 0.50 6.90 0.77

A549 7.61 7.00 0.61 6.69 0.92

KLM-1 7.64 7.40 0.24 6.78 0.88

MIA PaCa-2 7.29 6.94 0.35 6.30 0.99

ACHN 7.52 6.87 0.65 6.32 1.20

LoVo-1 7.61 7.34 0.27 6.63 0.98

U251MG 7.46 6.46 1.00 6.43 1.03

Y-79 7.52 6.99 0.53 6.42 1.10

Normal cell lines

HEL 7.32 7.03 0.29 6.46 0.86

HUVEC 7.44 7.07 0.37 6.34 1.10

Table 2. Changes in pHi of various species of cancer cells
and normal cells (HEL and HUVEC) caused by 20 and 100µM
Phx-1. The pHi of various species of cancer cells and normal
cells (HEL and HUVEC) was examined at 30min without the
addition of Phx-1, and 30min after the addition of 20 or 100 µM
Phx-1 (Fig. 2B). "pHi indicates the difference between pHi at
30min with and without 20 or 100 µM Phx-1. Value in the table
is the means of triplicate trials.

Phx-1
0 µM 20µM 100µM

pHi pHi "pHi pHi "pHi

Cancer cell lines

MCF-7 7.53 7.37 0.16 6.94 0.59

A431 7.56 7.54 0.02 7.37 0.19

KCP-4 7.72 7.64 0.08 7.44 0.28

A549 7.61 7.52 0.09 7.33 0.28

KLM-1 7.57 7.42 0.15 7.23 0.34

MIA PaCa-2 7.31 7.26 0.05 7.05 0.26

ACHN 7.65 7.49 0.16 7.22 0.43

LoVo-1 7.56 7.44 0.12 7.26 0.30

U251MG 7.55 7.54 0.01 7.44 0.11

Y-79 7.46 7.34 0.12 7.11 0.35

Normal cell lines

HEL 7.32 7.25 0.07 7.03 0.29

HUVEC 7.44 7.41 0.03 7.15 0.29
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by Phx-3 was evident in A431 cells as well (i.e., the
population of apoptotic cells increased time- and
dose-dependently, after the addition of 7 or 14 µM
Phx-3) (Fig. 3B).

Since the initial pHi of MCF-7 (7.62) and that of
A431 (7.50) was reduced to 7.12 and 7.28, respec-
tively, during 30min incubation of these cells with
20 µM Phx-3 (Figs. 2A and 2C), it is likely that the
onset of apoptosis of MCF-7 and A431 cells might be
preceded by early acidification in these cells that was
caused by Phx-3.

Proapoptotic effects of Phx-3 or Phx-1 on a
variety of cancer cells and normal cells (HEL and
HUVEC) detected by the loss of mitochondrial
membrane potentials. Since we found that Phx-3
exerted significant proapoptotic effects on MCF-7
and A431 cells, we studied whether Phx-3 might
cause the apoptosis of a variety of cancer cells (MCF-
7, A431, KCP-4, A549, KLM-1, MIA PaCa-2,
ACHN, LoVo-1, U251MG and Y-79) and two normal
cells (HEL and HUVEC). Table 3 summarizes the
population of apoptotic cells detected by the loss of
mitochondrial membrane potential, in these cancer
cells and normal cells (HEL and HUVEC) treated
with Phx-3 for 9 h. At 7 and 14 µM Phx-3, the
population of apoptotic cells significantly increased
with time, in cancer cells except for human pancre-
atic cancer cell lines, KLM-1 and MIA PaCa-2 and
human retinoblastoma cell line, Y-79. Negligible
increase in the population of apoptotic cells was
seen in normal cells (HEL and HUVEC) treated with
7 µM or 14 µM Phx-3 (Table 3).

Cytotoxic effects of Phx-3 and Phx-1 on
cancer cells and normal cells in vitro. Figure 4A
depicts the cytotoxic effects of Phx-3 on ten different
cancer cells (MCF-7, A431, KCP-4, A549, KLM-1,
MIA PaCa-2, ACHN, LoVo-1, U251MG and Y-79).
All these cancer cells except for KLM-1, LoVo-1 and
Y-79 cells were vulnerable to Phx-3 at the concen-
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Fig. 3. Proapoptotic effects of Phx-3 on MCF-7 and A431 cells. The effects of different concentrations of Phx-3 (0, 7 and 14 µM) on the
apoptosis induction of MCF-7 and A431 cells were examined after 0, 3, 6 and 9 h. The population of apoptotic cells (%) was detected
as the loss of mitochondrial membrane potential as described in Materials and methods. *p < 0.01, **p < 0.001.

Table 3. Effects of different concentrations of Phx-3 on the
population (%) of apoptotic cells in various species of cancer cells
and normal cells (HEL and HUVEC) evaluated by the decrease
of mitochondrial membrane potential. The mitochondrial
membrane potential in each cell was measured after 9 h
incubation with or without 7 or 14µM Phx-3.

Cell lines
population (%) of apoptotic cells

Phx-3 (0 µM) Phx-3 (7 µM) Phx-3 (14 µM)

Cancer cell lines

MCF-7 16.18 23.71 43.84

A431 8.76 61.09 59.81

KCP-4 16.11 65.42 69.3

A549 13.37 90.82 96.67

KLM-1 7.54 8.04 10.33

MIA PaCa-2 41.13 46.57 46.09

ACHN 15.76 32.25 36.97

LoVo-1 19.74 36.51 38.75

U251MG 7.38 28.92 36.10

Y-79 4.64 4.48 5.14

Normal cell lines

HEL 8.18 7.99 8.40

HUVEC 4.03 5.44 6.98
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trations less than 10 µM. The cytotoxic effects of
Phx-1 on these cancer cells were much less than those
of Phx-3 (Fig. 4B), being comparable to pHi change
in these cells treated with Phx-1 and Phx-3 (Tables 1
and 2).

With respect to normal cells including HEL
and HUVEC, Phx-3 and Phx-1 exerted paradoxical
effects on these cells, according to the dose of these
phenoxazines (Figs. 4C and 4D). Namely, when these
cells were treated with less than 10 µM Phx-3, the
number of viable cells was increased to a great extent
(maximally 180% for HUVEC, and 160% for HEL),

while that of these cells was extensively decreased by
20 µM or more Phx-3 (Fig. 4C). Similar behavior of
these cells was indicated when the cells were treated
with Phx-1, dependent on the doses, though the
cytotoxic effects of Phx-1 were much smaller than
that of Phx-3 (Fig. 4D).

From these results, IC50 (the concentration to
suppress the viability of the cells by 50%) of Phx-3
and Phx-1 against ten cancer cell lines (MCF-7,
A431, KCP-4, A549, KLM-1, MIA PaCa-2, ACHN,
LoVo-1, U251MG and Y-79) and two normal cell
lines (HEL and HUVEC) was obtained (Table 4).
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Fig. 4. Cytotoxic effects of Phx-3 and Phx-1 on a variety of cancer cells and normal cells. Ten species of cancer cell lines (MCF-7, A431,
KCP-4, A549, KLM-1, MIA PaCa-2, ACHN, LoVo-1, U251MG and Y-79) and two normal cell lines (HEL and HUVEC) were treated
with different concentrations of Phx-3, at 37 °C for 24 h. The viability of these cells (%) was depicted as a function of different
concentrations of Phx-3 or Phx-1. A: Cytotoxicity of Phx-3 to a variety of cancer cell lines; B: Cytotoxicity of Phx-1 to a variety of
cancer cell lines; C: Cytotoxicity of Phx-3 to normal cells (HEL and HUVEC); D: Cytotoxicity of Phx-1 to normal cells (HEL and
HUVEC).
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Though the sensitivity of cancer cells to Phx-3
changed according to cell species, seven cancer cell
lines (except for KLM-1, LoVo-1 and Y-79 cells) were
sensitive to this phenoxazine compound (IC50: 9 less
than 8 µM). The IC50 of Phx-3 for KLM-1, LoVo-1
and Y-79 cells was 21.5 µM, 20 µM and 18 µM,
respectively. The cytotoxic effects of Phx-1 on these
cancer cells were much less than those of Phx-3,
because IC50 of Phx-1 was more than 48 µM for every
cancer cell.

The IC50 of Phx-3 for the normal cells, HEL and
HUVEC was >50 µM and 16 µM, respectively,
indicating that these cells are less sensitive to Phx-3
than cancer cells. The IC50 of Phx-1 for HEL and
HUVEC was >200 µM and 74 µM, respectively,
showing less sensitivitiy of these cells to Phx-1.

Discussion

Agents that induce the apoptotic cell death of
cancer cells but not of normal cells would be ideal
chemotherapeutic drugs for patients with cancer.
Though many agents for treating cancer have been
developed, they also have extensive adverse effects on
normal cells and the human body. Actinomycin D
found in streptomyces is the oxidative form of
phenoxazine and exhibits strong anticancer activity
exclusively against Wilms’s tumor,30) but also has
the adverse effects, including the bone marrow

suppression. Most phenoxazines, which are chemi-
cally synthesized, conform to the reductive form, are
hardly soluble in water, and exert little anticancer
effect, except for some compounds.31) Phx-3 and
Phx-1 are synthesized by the biological reactions of o-
aminophenol or 2-amino-5-methylphenol with bovine
hemoglobin solution or bovine erythrocytes, conform
to the oxidative form, as Actinomycin D, and are
relatively water-soluble.20),21),32),33) Phx-3 is identical
to questiomycin A that was identified as an antibiotic
against Mycobacterium tuberculosis in a streptomy-
ces isolated from the soil in Tokyo in 195934) and has
recently been characterized as exhibiting anticancer
activity against several cancer cell lines,24),32),33)

strong antimicrobial activity against Helicobacter
pylori, in vitro,35) anti-angiogenic activity indicated
by the inhibition of the expression of angiogenic
factors in HUVEC treated with high concentrations
of glucose,36) and anti-inflammatory activity.37)

Phx-1 has been characterized as exerting antiviral
effects against poliovirus and porcine parvovirus,38)

and antimicrobial effects against Clamydia pneumo-
niae,39) along with anticancer activity against several
cancer cell lines, with less efficacy than Phx-3,26) but
with far higher efficacy when treated with tumor
necrosis factor-related apoptosis inducing ligand
(TRAIL).40) However, the general availability of
Phx-3 and Phx-1 for treating cancer awaits clarifica-
tion of the detailed mechanism for the anticancer
activity of Phx-3 and Phx-1, which has remained
unclear. In the present study, we aimed at inves-
tigating the pHi-reducing activity of these phenox-
azine compounds against ten cancer cell lines derived
from various organs, targeting the perturbation of
cancer specific metabolism that is characterized by
the Warburg effect.

The Warburg effect implies preferential utiliza-
tion of glycolysis rather than the oxidative phospho-
rylation even under aerobic conditions, in cancer
cells,1),2) and has been recognized as the metabolic
fragility distinguishing cancer cells from normal cells,
now being targets of cancer chemotherapy.3),4) It is
reasonable to suggest that the cellular death of these
cells may be induced by reversing the Warburg effect,
i.e. by inhibiting of glycolysis. In this context, 2-
deoxyglucose has recently attracted much attention.
2-Deoxyglucose inhibits the activity of hexokinase,
an initial rate-limiting enzyme of the glycolytic
pathway, and thereby reduces intracellular ATP in
cancer cells, resulting in the activation of AMP-
activated protein kinase, which is involved in the
apoptotic mechanism in the cells.3) Recently, it has

Table 4. Cytotoxicity effects of Phx-3 and Phx-1 on various cell
lines and on normal cells (HEL and HUVEC). Cell survival was
determined with an MTT assay of these cells treated with Phx-3
or Phx-1 for 72 h. The IC50 values are the means ’ S.D. of
triplicates.

Cell lines
IC50 (µM)

Phx-3 Phx-1

Cancer cell lines

MCF-7 1.67 ’ 0.021 48.12 ’ 4.14

A431 7.94 ’ 0.21 152.14 ’ 5.89

KCP-4 5.03 ’ 0.21 73.06 ’ 4.85

A549 5.48 ’ 0.38 78.29 ’ 5.11

KLM-1 21.50 ’ 3.22 62.70 ’ 3.82

MIA PaCa-2 7.16 ’ 1.54 131.75 ’ 4.72

ACHN 3.58 ’ 0.22 85.16 ’ 4.28

LoVo-1 20.03 ’ 4.98 65.20 ’ 0.29

U251MG 6.34 ’ 1.05 64.03 ’ 3.87

Y-79 18.03 ’ 1.11 187.34 ’ 15.38

Normal cell lines

HEL >50 >200

HUVEC 16.06 ’ 0.19 74.06 ’ 0.86
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been shown that a single use of 2-deoxyglucose often
stimulates the surviving mechanism including the
serine/threonine kinase Akt in cancer cells,3),4) but
that the combined application of 2-deoxyglucose with
anticancer drugs drastically perturbs the intracellular
energy metabolism and inhibits the Akt signaling in
cancer cells, providing useful therapeutics for treating
cancer in mice.3),4) However, it is possible to suppress
glycolysis in cancer cells without use of 2-deoxyglu-
cose by reducing pHi in cancer cells. The glycolytic
pathway is extensively suppressed by lowering pHi
in cancer cells, due to suppression of the activity of
the rate-limiting enzymes of the glycolytic pathway,
specifically hexokinase, pyruvate kinase, and exclu-
sively phosphofructokinase,41) as the glycolytic activ-
ity at pHi 6.6 is suppressed by 75% to 80% from that
at pHi 7.4 in human erythrocytes.29) Such a drastic
decrease of glycolytic pathway in cancer cells may
affect the pentose cycle, which is directly connected
with the glycolytic pathway and is necessary for the
producing nucleic acids in the cells. Therefore,
lowering of pHi may reverse the Warburg effect and
thereby induce apoptosis in cancer cells.

It is easy to decrease pHi in normal cells by
lowering the pHe. However, it is very difficult to
decrease pHi in cancer cells by such a change in pHe
because of the action of a proton pump (NaD/HD

exchanger isoform 1: NHE1) in the plasma mem-
branes of cancer cells.11),12) In order to overcome the
difficulty of decreasing pHi in cancer cells, NHE1
specific inhibitors, amiloride and 5-(N,N-hexameth-
ylene)-amiloride (HMA) have been experimentally
used. Kim and Lee42) demonstrated that the addition
of amiloride alone did not significantly decrease pHi
in Hela cells, but that the combined use of amiloride
and TRAIL caused a significant decrease of pHi
(0.2 pH units) and apoptotic cell death in the
cells. Furthermore, Rich et al.28) found that HMA,
a derivative of amiloride with much stronger anti-
NHE1 activity, induced apoptosis in primary leuke-
mic cells obtained from patients with acute lympho-
cyte leukemia, causing a significant decrease of pHi
in the cells after five hours. These results suggest
that the agents used extensively to lower pHi may be
effective in causing profound apoptotic cell death of
cancer cells.

We found in the present study that pHi in nine
of ten different species of cancer cell lines (MCF-7,
A431, KCP-4, A549, KLM-1, ACHN, LoVo-1,
U251MG and Y-79) (except for MIA PaCa-2 cells)
was significantly elevated (Table 1) compared with
the extracellular medium (pHe F 7.4), pHi in normal

cells such as HEL (7.32) and HUVEC (7.44)
(Table 1), human peripheral blood mononuclear cells
(pHi 57.1),28) bone marrow mononuclear cells (pHi
57.1)28) and human erythrocytes (pH 57.2),8) being
consistent with the results described in several
reports.14),17) Such higher levels of pHi in cancer cells
could be achieved by NHE1 of the plasma membrane
of cancer cells, as suggested in many reports.11),12)

Elevation of pHi in these cancer cells may be
advantageous for the proliferative stimuli and
oncogene transformation18),19) as well. The micro-
environment of some regions of solid cancers is often
0.5 pH units lower than the normal tissues, while pHi
in the solid tumors is maintained at or close to
normal levels.5),6) The present results that pHi in a
variety of cancer cell lines is significantly higher than
the extracellular pH of 7.4, are very consistent with
these in vivo results.5),6) Therefore, if we take account
the fact that the activity of the glycolytic pathway is
markedly accelerated at alkaline pH in both normal
and cancer cells,29),43) due to the activation of
phosphofructokinase, a key enzyme of the glycolytic
pathway,44) the Warburg effect, though still consid-
ered enigmatic,2) may be explained simply by the
elevation of pHi in cancer cells.

Then, it is conceivable that if the Warburg effect
were reversed by lowering pHi of the cancer cells,
these cells may be obliged to kill themselves through
the apoptotic mechanism. Considering this view, we
examined the effects of the oxidative phenoxazines,
Phx-3 and Phx-1 on the reduction of pHi and
apoptotic events in various cancer cells. We found
that pHi in ten different species of cancer cell lines
(MCF-7, A431, KCP-4, A549, KLM-1, MIA PaCa-2,
ACHN, LoVo-1, U251MG and Y-79) decreased
rapidly and dose-dependently, when these cells were
treated with Phx-3 (Figs. 2A and 2C, Table 1) or
Phx-1 (Figs. 2B and 2D, Table 2). In particular,
100 µM Phx-3 decreased pHi by 0.6 pH units or more
in these cancer cells (Table 1), while 100 µM Phx-1
decreased it by 0.1 pHi units or more (Table 2). The
drastic decrease in pHi occurred within several
minutes and continued for more than several hours
(data not shown), which would possibly lead to
extensive suppression of glycolysis accompanying
a reversal of the Warburg effect in cancer cells,
effectively promoting apoptotic events that occur
after a time lag of several hours, as seen in Table 3.
Therefore, a plausible and comprehensive mechanism
for the anticancer effects of Phx-3 and Phx-1 on
cancer cells including the reversal of the Warburg
effect was proposed in Scheme 1.
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The pHi decrease in these cancer cells caused by
Phx-3 or Phx-1 may be primarily attributed to the
inhibition of NHE1 in the plasma membrane of these
cells, as has been suggested for various anticancer
drugs,45),46) and was indicated by Nagata et al.33)

that Phx-3 inhibited NHE1 in human gastric cell
lines, MNK 45 and MNK74 cells, inducing a rapid
and drastic decrease of pHi in the cells. However, the
possibility that the decrease of pHi was caused by the
mitochondrial perturbation in these cancer cells with
Phx-3 or Phx-1 cannot be ruled out, judging from the
indication of Matsuyama et al.47),48) that the intra-
cellular acidification occurs rapidly after the admin-
istration of mitochondria-dependent stimuli includ-
ing staurosporine and ultraviolet irradiation to
cancer cells, followed by release of cytochrome c,
activation of caspases and mitochondrial swelling
and depolarization, and the recent reports24),26) that
Phx-3 and Phx-1 causes the apoptosis of cancer cells
accompanying the activation of caspase-3.

The extensive decrease of pHi in cancer cells may
induce various perturbation of intracellular homeo-
stasis, in addition of suppression of the glycolytic
metabolism, promoting proapoptotic signaling, in
these cells. Matsuyama et al.47) and Lagadic-
Gossmann et al.49) indicated that the decrease of pHi
would cause the activation of caspase-3, a crucial
executing enzyme of the apoptosis and finally induce
the apoptotic cell death of cancer cells. On the other
hand, Barry et al.16) indicated that DNase II, a pH-
dependent endonuclease which is responsible for
the DNA fragmentation, may act at lower pH and
therefore may be associated with the apoptosis in

the cells. Furthermore, Pérez-Sala et al.18) demon-
strated that when HL-60 cells (a human leukemia cell
line) were treated with either ionomycin or lovastatin,
cellular apoptosis was induced due to intracellular
acidification and activation of DNase II, although the
extent of pHi decrease was 0.2 to 0.3 pH units. There-
fore, the activation of caspase-3 and DNase II may be
involved in the apoptotic cell death in the Phx-3- or
Phx-1-treated cancer cells, in which pHi is extremely
reduced. These views were supported by our finding
that the apoptotic cell death was apparently caused in
different species of cancer cells, 9 h after the addition of
Phx-3, as detected by the loss of mitochondrial
membrane potential (Table 3, Figs. 3A and 3B).

Depolarization of the mitochondria has been
known as an eminent change at a final stage of
apoptotic events in cancer cells.47),48) Our present
findings in Table 3 indicated that the depolarization
of the mitochondria was extensively caused in seven of
ten different cancer cells (except for human pancreatic
cancer cell lines, KLM-1 and MIA PaCa-2, and human
retinoblastoma cell line, Y-79 cells), 9 h after the
addition of 7 or 14 µM Phx-3. These results demon-
strate that Phx-3 has a strong ability to depolarize the
mitochondria in cancer cells, consistent with recent
reports that Phx-3 is involved in depolarization of
the mitochondria in multiple myeloma cell line U266
cells.50),51) Currently, it is unclear why Phx-3 had less
effect on the depolarization of mitochondria in KLM-1,
MIA PaCa-2 cells and Y-79 cells.

In order to quantitatively estimate the effects
of a pHi decrease caused by Phx-3 or Phx-1 on the
viability of ten cancer cell lines, we compared the

2-deoxyglucose

Phx-3
(or Phx-1) Mitochondrial

depolarization

Caspase-3 activity

Apoptosis

glycolysis

Akt

AMP kinase
pHi

(NHE1 activity   ) DNase II activity

Cell survival signalingAkt

Mitochondrial
integrity

Scheme 1. A plausible mechanism for inducing apoptosis in a variety of cancer cells caused with Phx-3 or Phx-1.
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cause and effect relationship between these factors
based on the results in Table 1, Table 2, Fig. 4A and
Fig. 4B. Figure 5 shows a logarithmic plot of the
survival rate (%) as a function of "pHi in ten cancer
cell lines with 20 µM Phx-3 or 100 µM Phx-1. It was
found that suppression of the survival rate was
closely related with the magnitude of "pHi with
regard to the effects of 20 µM Phx-3 and 100 µM Phx-
1 on four of ten cancer cell lines (A549, KLM-1, MIA
PaCa-2, and LoVo-1 cells), with regard to the effects
of 20 µM Phx-3 on two cancer cell lines (MCF-7 and
KCP-4 cells), and with regard to the effect of Phx-1
on three cancer cell lines (A431, Y-79 and ACHN
cells) (y F !2.12x D 2.24, r F !0.832, p < 0.01).
Only U251MG cells deviated from this equation.
Therefore it may be possible to say that the cytotoxic
effects of Phx-3 may primarily be attributed to the
magnitude of "pHi in cancer cells with these
phenoxazines.

Serine/threonine kinase Akt has been recognized
to mediate a variety of survival signaling, participat-
ing in growth factor maintenance of cell survival and

preventing cancer cells from becoming apop-
totic.52),53) Therefore, it will be important to suppress
the Akt signaling to prevent the survival of cancer
cells. Enoki et al.54) initially reported that Phx-1, a
phenoxazine compound, has significant activity in
suppressing the phosphorylation of Akt in rat
basophilic leukemia RBL-2H3 cells. Hara et al.40)

demonstrated that Phx-1 has the effect of inhibiting
the proliferation and serum-induced phosphorylation
of Akt in Jurkat cells, a human T cell leukemic
cell line. Thimmaiah et al.55) examined in detail the
effect of various kind of synthetic phenoxazines and
demonstrated that N10-substituted phenoxazines
such as 10-[4′-(N-diethylamino)butyl]-2-chlorophen-
oxazine and 10-[4′-[(O-hydroxyethyl)piperazino]-
butyl]-2-chlorophenoxazine, strongly inhibited Akt
phosphorylation. Thus, we examined whether or not
Phx-3 inhibits Akt in human lung adenocarcinoma
cell line A549 cells. It was found that Phx-3 inhibited
the phosphorylation of Akt with time in the cells
(data not shown), suggesting that Phx-3 strongly
suppresses Akt signaling in cancer cells. We are now

y = -2.12x + 2.24 
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p < 0.01
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Fig. 5. Logarithmic plot of the survival rate (%) against "pHi in ten cancer cells treated with 20µM Phx-3 or 100µM Phx-1. The
survival rate (%) of ten cancer cell lines (MCF-7, A431, KCP-4, A549, KLM-1, MIA PaCa-2, ACHN, LoVo-1, U251MG and Y-79) in
the presence of 20µM Phx-3 or 100 µM Phx-1 (data from Figs. 4A and 4B) (expressed logarithmically) was plotted as a function of
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which are close to the equation (y F !2.12x D 2.24, r F !0.832, p < 0.01), and gray rhombuses and circles show those which deviated
from the equation.
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preparing to investigate whether or not the inhibition
of Akt signaling caused by Phx-3 commonly occurs in
many cancer cells. Taken together, it is quite possible
that Phx-3 and Phx-1 are involved in inhibiting Akt
signaling in cancer cells, and contribute to inducing
apoptosis in cancer cells, as summarized in Scheme 1.
These phenoxazines seem to exert anti-cancer activ-
ity against cancer cells, manifesting a decrease of
pHi, reversal of the Warburg effect (F inhibition of
glycolysis), activation of DNase II (pH-dependent
endonuclease) and caspase-3, promotion of mitochon-
drial depolarization, and inhibition of Akt phospho-
rylation associated with the cell survival.

According to Hendrich et al.,56) phenoxazine
molecules are located close to the polar/apolar
interface of lipid bilayers and weakly interact with
lipid bilayers, altering the lipid phase properties of
the cellular and mitochondrial membranes. Thus, it is
probable that NHE1, which is located in the cellular
membrane and regulates the discharge of hydrogen
ion from the cytozol to the outside,11),12) may be
affected by Phx-3 or Phx-1 penetrating into the lipid
bilayers of the cellular membrane of cancer cells,
possibly causing the inhibition of NHE1 activity. The
integrity of the mitochondria may be also disturbed
by the penetration of phenoxazine molecules, result-
ing in the depolarization of the mitochondria. The
present results in Table 3 are in good accordance
with this view. Recently, Zheng et al.27) demon-
strated that Phx-3 has higher affinity to the
mitochondria in human lung adenocarcinoma cell
line A549 cells and depolarizes the mitochondria
in cells, consistent with the above-stated report of
Hendrich et al.56)

Differences between Phx-3 and Phx-1 in the
effectiveness to cancer cells may be related with
differences in the chemical structures. For example,
2,7-diamino-3,8-dimethylphenazine, a derivative of
phenazine with a tricyclic structure similar to
phenoxazine (Fig. 1), exerts mutagenic effect.57)

However, vitamin B2, a derivative of phenazine
which carries methyl group at position 7 and 8 of
the tricyclic structure is not toxic to the human body.
This suggests that methyl group at the position 7
and 8 of the tricyclic structure may to some degree
buffer the original toxic action of phenazine. This
may explain why Phx-1, which has one methyl
group at the position 7 of the tricyclic strucuture
(Fig. 1), exerts far milder effect than Phx-3 in terms
of cytotoxic effects against cancer cells (IC50 in
Table 4), though the present view is still speculative.
Cinnabarinic acid, another oxidative phenoxazine

produced by the reaction of 3-hydroxyanthranilic
acid with human hemoglobin,58) has carboxyl group
at the position 1 and 9 of the tricyclic structure, and
has been shown to be carcinogenic.59) Actinomycin D
contains the phenoxazine structure, in which methyl
group is present at the position 4 and 6, and has
strong adverse effects to the human body.60) We
found that a derivative of Phx-3 with methyl group
at the position 4 and 6 of the tricyclic structure,
caused fetal death when administered to mice (our
unpublished data). Therefore, the relationship be-
tween chemical structure and bioactivity of these
tricyclic chromophores may become an interesting
theme in the future.

It will be noteworthy that despite the significant
decrease of pHi in a human embryonic lung fibroblast
HEL and human umbilical vein endothelial cells
(HUVEC) in the presence of 20 or 100 µM Phx-3
(Table 1), the depolarization of the mitochondria
was not seen in these normal cells, 9 h after the
addition of this phenoxazine (Table 3). This result
suggests that the decrease in pHi is fatal to cancer
cells, but not to normal cells, and some protective
mechanism may be operating in normal cells such as
HEL and HUVEC. Our present results are consistent
with the indication of Rich et al.28) that HMA, a
strong inhibitor of NHE1, is more effective to
leukemic cells with higher pHi, but less effective to
normal hematopoietic cells with relatively lower
pHi, in terms of cytotoxicity. These findings may be
related to the least adverse effects of Phx-3 to mice.
Namely, Miyano-Kurosaki et al.24) reported that
the bone marrow suppression and bodyweight loss
were not indicated, when Phx-3 (0.5mg/kg), which
exerted strong anticancer effects on mouse melanoma
cells, was administered to mice, while Mori et al.61)

reported that 5-fluorouracil, a potential anticancer
drug, exerts severe adverse effects including decrease
of leukocyte counts and bodyweight loss at the dose
of 5mg/kg to mice. Kohno et al.37) recently reported
that no bodyweight loss and gastro-intestinal injury
were observed, when 500mg to 1500mg/kg Phx-3
was orally administered to mice. In addition, at lower
concentrations of Phx-3 less than 10 µM, the number
of viable cells increased to a great extent in normal
cell lines HEL (160% increase) and HUVEC (180%
increase) (Fig. 4C), suggesting that Phx-3 may
activate normal cells at lower concentrations. The
explanation for this paradoxical effects of Phx-3 is
a topic for further investigation. Concerning the
toxicity of Phx-1, it has been reported by Mori
et al.61) and Shimamoto et al.22) that Phx-1 does not
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exert significant adverse effects including the body-
weight loss, piloerection, or decrease of leukocyte
counts in mice.

In conclusion, the drugs that cause drastic
acidification of cancer cells, reverse the Warburg
effect, depolarize the mitochondria, suppress Akt
signaling and thereby induce apoptosis of these cells
are anticipated to be benevolent therapeutics for
cancer.3),10),62) Phx-3 and Phx-1 are suitable for this
purpose because they can cause extensively decrease
pHi (more than 0.6 pH units in Phx-3 and more than
0.1 pH units in Phx-1), induce apoptosis and exert
cytotoxic effects in the cancer cells, exerting least
adverse effects.
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