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Extraction of hadron interactions above inelastic threshold
in lattice QCD
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Abstract:

We propose a new method to extract hadron interactions above inelastic

threshold from the Nambu—Bethe—Salpeter amplitude in lattice QCD. We consider the scattering
such as A + B— C+ D, where A, B, C, D are names of different 1-particle states. An extension to
cases where particle productions occur during scatterings is also discussed.

Keywords:

1. Introduction

The origin of the nuclear force is one of the
major unsolved problems in particle and nuclear
physics even after the establishment of the quantum
chromodynamics (QCD). Recently, three of the
present authors proposed a new approach to extract
the NN interactions below inelastic threshold in
lattice QCD.Y® Through the Nambu—Bethe—
Salpeter (NBS) wave function, the energy-
independent but non-local potential U(r,r') is so
defined that the NBS wave function obeys the
Schrédinger type equation in finite volume. Since
U(r,r') is localized in its spatial coordinates due
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to confinement of quarks and gluons, the potential
receives finite volume effect only weakly in a large
box. Therefore, once U is determined and is
appropriately extrapolated to L — oo, one may
simply use the Schrédinger equation in the infinite
space to calculate the scattering phase shifts and
bound state spectra, which can be compared with
experimental data. With this approach we success-
fully extract not only the nucleon potentiall)™
but also the hyperon potential®® below inelastic
threshold in QCD.

Although this method is shown to be quite
successful in order to describe elastic hadron inter-
actions, the hadron interactions generally lead to
inelastic scatterings as the total energy of the system
increases. In this paper, we extend our method to
such inelastic scatterings in order to extract hadron
interactions in general. In Sec. 2, we briefly summa-
rize our method previously used to extract the
potential in the elastic scattering. In Sec. 3, we
present our main idea to analyze the inelastic
scattering from lattice QCD in the finite volume.
We here discuss the scattering such as A 4+ B —
C'+ D scattering, where A, B, C, D represent some
1-particle states. This is a simplified version of the
baryon scattering in the strangeness S= —2 and
isospin /= 0 channel, where AA, N= and XX appear
as asymptotic states if the total energy is larger than
2my. In Sec. 4, we discuss the extension of our
proposal to the scattering with particle productions
suchas A + B— A + B+ C. In Sec. 5 we summarize
this paper together with recent applications of our
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method in lattice QCD. A preliminary account of
these results is given in Ref. 7).

2. Hadron interactions below threshold:
elastic scattering

In this section, we summarize our strategy,
previously used to extract the potential between
two hadrons below inelastic threshold in lattice
QCD.

1. Nambu-Bethe-Salpeter wave function.
A key quantity in our method is the equal-time
Nambu—Bethe—Salpeter (NBS) amplitude, which
we call the “NBS wave function” throughout this
paper. Let us consider the following NBS wave
function for a particle A and a particle B in QCD
with total energy W in the center of mass system
(i.e. the total three-momentum P = 0) in the infinite
box;

y(re
= lim (0T{wa(y. t + 8)pn(x,t)}|AB; W, P = 0)
[2.1]
where the relative coordinate is denoted as r=x — y.
Here the local operators for the A and the B, which
might be composite, are denoted by ¢(x,t) and
vp(y,t) with possible indices such as spinor or flavor
being suppressed for simplicity. The QCD vacuum is
denoted by |0), while the state |[AB;W, P =0) is a
QCD eigenstate with the same quantum numbers as
the AB system. Note that |AB;W,P =0) can be
taken as a product of 1-particle asymptotic state
|A);, ® |B);, in the infinite box, while this is not true
in the finite box.

If the total energy W = EA +EP = vm? + K’
+V'm? b + k* is smaller than the melastlc threshold
Ey, ' 5(7) satisfies

i =t [ A2 o B
(27)® (p? — K* —ie) 4WE!
X Tapap(pa, B ka, kp) +Z(r) 2.2]

where py = (E;‘,p), ks = (E} k), kp = (EP, —k) are
on-shell 4 momenta, while pg = (W — E;}, —p) is gen-
erally off-shell. Therefore Tap a5(q1, 92, g3, ¢4) is in gen-
eral off-shell T-matrix, defined through the connect-
ed four-point Green’s function GAB 4p(P1, P23 D3, D4)

as

Gifg,AB(pl,m;ps,m)
= (27T)454(p1 +p2 —p3 — p4)
X iD4(p1)iDp(p2)iTapa(p1,D2; 3, 1)

X 1D 4(p3)iDp(ps) 2.3]
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where Dyp)(p) is the free propagator for a particle
A(B) in the momentum space, which does not contain
the negative energy part (i.e. the contribution of the
corresponding anti-particle). In the above expression,
Z(r), which is exponentially suppressed for large
r=|r| as ¢ with ¢ < \/E% — W? > 0, represents
contributions from other than elastic scattering
A+B— A+ B
With the partial wave decomposition that

¢AB = 471'2 [wABl lm( )YZ’UL(‘QIC) [24]

where k = |k|, Y}, is the spherical harmonic function
and 2, is the solid angle of the vector r, one can show
for the large r that

sin(kr — Im/2 + 61(k))
kr ’

where the “phase shift” §(k) is the phase of the S-
matrix of the A+ B— A+ B scattering for the
partial wave [ Therefore the NBS wave function
is indeed the “wave function” which describes the
AB — AB elastic scattering.?)®)10)

In the finite volume, restricted values of k
denoted by k, can be realized to satisfy the boundary
condition. From the energy of two particle Wy, in the
finite volume, one can determine the phase shift §,(k,)
through Liischer’s formula,'”) where £, is determined
from Wy = Ejf” + E}f”‘

2.2. Strategy to define the potential. In this
subsection, we summarize our strategy to define the
“potential” in QCD.

(1) We choose the field operator ¢4 and ¢p. If
these operators are composite, there are many choices
to create the same one-particle state. For example,
we take the local operator for nucleon in our previous
calculations for the nucleon potential.)=)

(2) We then measure the NBS wave function,
defined by

4p(T)
= 6EIOH+<0|T{<PA($ +7,0)¢p(x,0)}|AB;W, P = 0).
[2.6]

Pap(r k) — A [2.5]

(3) Motivated by the fact that the NBS wave
function describes the elastic scattering in the large r,
we define the non-local potential as

(EAP — HAP () = / dy Uz p)dly(y), [27]
_V?

kQ
AB _ HAB _ ,
2paB

k 2uap’ 0
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where k = |k| and the reduced mass 45 is defined by
1/NAB: 1/mA + 1/mB.

(4) We then perform the velocity (or derivative)
expansion that U(z;y) = V(z, V)& (z — y). In the
case of the NN scattering, for example, we have!?

V(r,V) =V(r) + V,(r)(o1 - o2) + Vp(r)Si2
T Vis()L- S+ O(V) 2.9
where o; is the spin operator of i-th particle, Sio is
the tensor operator given by

3

S19 == (o1-7)(02-7) — (01 - 03).

5 [2.9]

In the above expansion, the first three terms are
of the leading order (LO), which do not contain
derivatives, while the 4-th term is of the next leading
order (NLO) with one derivative.

(5) Once we obtain the potentials, we solve the
Schrodinger equation with these potentials in the
infinite volume to obtain physical observables such as
the phase shift and binding energy. Note that the
exact value of the scattering phase shift &(k) is
obtained from this Schrédinger equation, while 0(k')
at K #k is approximated one as long as the
derivative expansion for the potential is truncated
at the finite order.

In order to extract the NBS wave function on
the lattice, we evaluate the 4-point correlation
function as

Gan(x, y,t —to; ")
= (0|T{wa(z, )pn(y, 1)} T an(to; J7)[0) 2.10]
=Y A (0IT{pa(, 0)05(y, 0)} W, )e M=)
! 2.11]
— Agz/)%g(r =x—y; Jp)e’W“(t’t‘”, t—1ty — oo
[2.12]

where A, = (W,|T ag(to; J)|0), and Tap(te; J¥) is
some source operator which create 2-particle states
of AB at f, with fixed total angular momentum J
and parity P.1)™)

2.3. Frequently asked questions. There exist
some questions to the definition of the potential in
the previous subsection.

(1) Does the potential depend on the choice of
operators @4, @’

Yes. The potential of course depends on the
operators 4, ¢p from which the NBS wave function
is defined. The choice of the operators can be
regarded as the “scheme” to define the potential,
since the potential itself is not a physical observable
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so that it can be scheme-dependent. If we calculate
the physical observables, however, we obtain the
unique result irrespective of the choice for the
operators ¢, op as long as U(x;y) is evaluated
exactly. This is quite analogous to the running
coupling, which is of course scheme-dependent.
Physical matrix elements do not depend on the
scheme of the running coupling, as long as they are
evaluated exactly.

(2) Does the potential depend on the total
energy at which the NBS wave function is defined?

By construction, U(z; y) is non-local but energy-
independent, while the definition

H Pyl ()
LVB(@
gives a local but energy(momentum)-dependent
potential. It is easy to see that Vi(x) is equivalent
to U(x,y) since the number of degrees of freedom
of k is equal to that of y in the finite volume.?)
From the k-dependence of the Vi(x), we therefore
can determine the higher order terms of the
derivative expansion V(z, V). It turns out, however,
that the k-dependence of Vi(x) for the nucleon
potential is very small in quenched QCD between
k~0MeV (ENN ~0MeV) and k=~ 240MeV
(ENN ~45MeV) for our scheme,"™'9 where the
local composite field of three quarks is used for

nucleon operator.

Vi(z) = B} — [2.13]

3. Hadron interactions above inelastic threshold

3.1. NBS wave function in inelastic scat-
tering. We now consider the scatterings A +
B— A+ B and A+ B— C+ D. We assume that
my + mg < mg+ mp < W, where W:Ef‘—I—E,{? is
the total energy of the system with E¥ = v/ m3 + k.
In this situation, the QCD eigenstate with the
quantum numbers of the AB state and center of
mass energy W is expressed in general as

‘W) ZCAB|AB,W) +CCD|CD,W>+--- [31]
|ABa W> - |Av k>in ® |B> 7k>in7
|CD7 W> = |C7 q>in ® |D’ _q>in’ [32]

where W = E}? +EP = EqC + Ef. We define the
following NBS wave functions,

Yap(r, k) = lim (O[T{pa(z + ,8)pn(z, 0)}[W),

[3.3]
Yen(r,q) = lim (0T {po(@ + 7, 6)pn(z, 0) W),
[3.4]

which can be expressed as
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’(/}AB(rv k) wgB(Ta k)
- a3 %d
=\/ZsZp|caB e'* —|—/ p3 =/ ZysZp|caB jl(k’l“)‘i‘/p 2p
(27) 2m
err EA+EA AB,AB 1 AB,AB .
p _k2_26 4WEA T (pA)pB7kA7kB) Xp72 —kQ—Z‘GHl ’ (p’k)Jl(pT‘)

d3p ezpr
+ CCD/ 3 P .
(27)° p* — K —ie
E!+ E}
4VVE§1

) d3p
c e + / .
{ o,

C C
E + E‘] TCD CD

— g2 — e 4WEC

AB,CD (

X pAADBa(]Can)] [35]

Yep(r, q)
=\ ZcZp

eip-r

X

2

(pCapDa qo, qD)}
D

+ CAB/ d3p e
(27)* P* — ¢ —ie
E¢ + E¢

X —’) ] C ’ (p(‘ pD kA kB)
C oy ) )

[3.6]

where py = (EAp), ps=(W - EA—p), po=
(Ep ap) Pp = (W EC _p)7 kA - (Ek I k)a kB =
(Ek ) 7k) qc = (Ecv q) and qdp = (EqD - )
Introducing
HAPAPED (p, k(q))
B+ B}
ZH/VE'IQ4
HC’D.AB(CD)(p k(q))
C D
_ _ B+ E TCD.AB(CD)
4WEC

ABABED) (p 4 pp, ka, kp(ge,ap)) [3.7]

(pc,pp,ka,kplqc, qp)) [3-8]

and using the partial wave decomposition such
that,*

’l/))g/(’!‘ k) = 47‘(’22 '(pr r, k') lm( )}/I’m(gk) [39]

= 47TZZ Jl k"l“ Zm

l,m

) lm(Qk) [310]

HXY,VZ(p, k) = 47TZHIXY,VZ(p, k)y;m(Qp)m
Im

[3.11]
with XY, VZ= AB or CD, we have

*) Here we ignore spins for simplicity.

2
pdp 1 A .
+CCD/TﬁHlAB'CD(pv Q)Jl(pr)]

[3.12]
wlCD(r? q)
2
_ d
N cCD{qur) + / e
DR S PP (p, q) s (pr)
p?— @ —ie ! ’

2
p-dp 1 CD,AB )
+caB / D — H, (p, k’)]l(pr)] :

[3.13]

Here the spherical harmonic function Y}, is normal-

ized as
/ 40,V (2,

with the solid angle (2, of the vector r, and the
spherical Bessel function ji(z) is given by

st = o (L ) (2)

_ sin(x — Im/2)

l’m (Q’r) = 6ll’6mm’ [314]

~— 1 T — o0 [3.15]
x
The p integral gives® 10
Yap(r k) =\ ZaZp CAB{jZ(kr)
k  apap .
+ o 2 (ks k) k) + Z]l(kr)}}
k  aBcp .
Feen o H{BO () () + wz(kf)}]
+ T 5(r) [3.16]
Yop(r,q) = v ZoZp CCD{jZ(W)

+ % HZCD’CD(CL Q) {m(qr) + ijz(qr)}}
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+ can % HEPAP (q k) {m(qr) + ijl(qT)}]

+Zh (1) [3.17]

where Z' (), which represents all contributions
except those from the pole at p=~k or p=gq, is
exponentially suppressed for large 7, and another
spherical Bessel function ny(z) is given by

w=e (1) (5)
~ M

, T — o0. [3.18]
T
The unitarity relation
T-T" =4iT'T [3.19]
for the on-shell T-matrix T of the 2 channel
scattering gives
T w)
_ 87W o)
b1
iSL (W) I1,J
K 5 W) sin 6} (W) B 0 o)
0 €% (W) sin 82 (W)
[3.20]
O(W) = (C?SQ(W) —sinQ(VV))7
sinf(W)  cos (W)
I=12 J=1,2 [3.21]

where 6/(W) is the scattering phase shift, whereas
O( W) is the mixing angle between 1 and 2. Here index
1 represents AB while 2 represents CD. With this
notation p; = k and ps = q. We therefore obtain

Pr 1.0
2 gh
A7 l (pf7p.])

o (1 smelov) o
0 € (W) sin SHW)

1,J
X 0—1(W)1 ) [3.22]

Using these results, the NBS wave functions of
the 2 channel system behave for large r as

(0) ()
N (nl(kr) + i (kr) ’ >

0 ny(qr) + i51(qr)
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x O(W) (

x O (W) ( CAB)

C¢cp

1) sin 61 (W) 0
0 W) sin §2(W)

[3.23]

where .y = Wy /\/ZxZy. This expression shows
that the NBS wave function for large r agree with
scattering waves described by two scattering phases
8{(W) (i=1,2) and one mixing angle 6( W).

3.2. Coupled channel potentials. Let us now
consider QCD in the finite volume V. In the finite
volume, |AB, W) and |CD,W) are no longer eigen-
states of the hamiltonian. True eigenvalues are
shifted from W to W;= W+ O(V™!) (i=1,2). By
diagonalization method in lattice QCD simulations,
it is relatively easy to determine W; and W,. With
these values Liischer’s finite volume formula gives
two conditions, which, however, are insufficient to
determine three observables, &, 67 and 6. (See
refs. 17)—19) for recent proposals to overcome this
difficulty.) We here propose alternative approach to
extract three observables, 61, 67 and 6, in lattice QCD
through the above NBS wave functions. We con-
sider the (normalized) NBS wave functions at two
different values of energy, W; and Wj, in the finite
volume:

Yap(r, ki)

1 .
= 77 A 0T {pa@+ r.)pn(z, 0)HW:)

[3.24]
¢CD(raqi)
1 )
= Tz im0 {gc(@ + 7. 8)pp( 0 HW:),
i=1,2. [3.25]

(We here omit " on 1.) We then define the coupled
channel non-local potentials from the coupled chan-
nel Schrédinger equation as

[EQB — HPpap(z, ki)

Z/dgy Uap.as(z; y)Yap(y, ki)

+/d3y Uapco(z; y)ven(y, q;) [3.26]
[EP — HE Plep(w, k)
Z/dsy Ucp.as(; y)bap(y, ki)
+/d32/ Uep.co(x; y)ven(y, q;) [3.27]
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for © =1,2. As before we introduce the derivative
expansion as

Uxyyz(z;y) = Vxyyz(z, V)6 (z — y)
= [Vxvyz(z) + O(V)|8 (z - y)
[3.28]
and at the leading order of the expansion, we have
Kap(m, ki) = [E° — H{PJpap(x, ki)
= Vap ap(z)ap(z, ki)
+ Vapcp(®)ep(z, q;)
Kep(z, q,) = [E” — HSPlep(w, k;)
= Vep,ap(@®)pap(z, k;)
+ Vepep(®)den(w, q;).

[3.29]

[3.30]

These equations for ¢ =1,2 can be solved as

(VAB,AB(fB) VAB,CD(fl?))
Vep,as(®)  Vepcop(x)
_ (KAB(m; k1) Kup(e, k2)>
Kep(x,q1) Kep(z, gs)
" (%}B(w, ki) ap(z, k2)>1.
Yep(z,q1) Yep(w, gs)

Once we obtain the coupled channel local
potentials Vyy, yz(x), we solve the coupled channel
Scrédinger equation in infinite volume with some
appropriate boundary condition such that the
incoming wave has a definite | and consists of the
AB state only, in order to extract three observables
for each I, 6} (W), 67(W) and (W), at all values of W.
Of course, since Vyy, yz is the leading order approx-
imation in the velocity expansion of Uxy vz(z;y),
results for three observables &} (W), 67(W) and (W)
at W # Wy, W are also approximate ones and might
be different from the exact values. By performing
an additional extraction of Vyy vz(x) at (W3, Wy) #
(W1, Ws), we can test how good the leading order
approximation is, as in the case of the elastic
scattering.'®

The above result can be easily extended to
the coupled channel among n states A/B; (I =
1,2,...,n). Local potentials at the LO in the velocity
expansion are given by

[3.31]

Vi(r) = Z Ki(r ky) X' (r)yy  [3:32]
=

Ki(r,ky) = [Ey, — Hlbr(r k) [3.33]

where X~ !(7) is the inverse of the n x n NBS wave
function matrix

[Vol. 87,

X(r),
= ’Qb[(’f‘, kI])

=L i (01T {u, (4 7. 8) o, (. 0) W),

A /ZAIZBI 6—0t
[3.34)

the momentum k:g satisfies the relation that Wj; =
\/I(kll)2 4;’2”3“ + \/(kll)z —&-7711%, for2 J=1,2,...,n,
EJ = (kj) /(QII’LAIBI) and HO =-V /(2MAIBI)-

3.3. Inelasticity and non-locality. We now
consider the 2-channel problem again. Let us assume
that the leading order approximation for the coupled
channel potential works reasonably well. Instead
of considering the coupled channel potential, the
effective potential for the AB channel is given by

UilffB,AB(wa y)
= Vap.ap(x)8®(z — y) + Vapep(z)

» 1
E¢P — HEP — Vopop

(z, y)Vep,an(y),

[3.35]
where the non-locality becomes manifest in the
second term. The magnitude of momentum gq for
the CD channel is expressed as

AW?g? = (VV2 — (me + 7711))2)(W2 — (me — mD)z).
[3.36]

To estimate the magnitude of non-locality in
eq. [3.35], we here ignore the Vepcp term in the
denominator. In this case, if the total energy W is
below the inelastic threshold mg+ mp such that
¢ = —M? < 0, we have

1 2uep

- — —M|z—y|
H(]CD _ ECD (.’E, y) e
q

P Tr— [3.37]
Therefore, non-locality of the potential USL , 5(w, y)
is exponentially suppressed as long as M is large
enough. As W approaches m¢+ mp, however, non-
locality of the potential becomes larger and manifest.
In this simple example, this non-locality of the
single channel potential can be completely removed
by introducing the CD state and coupled channel
potentials between AB and CD. Therefore, in
practice, the non-locality caused by inelastic final
states whose thresholds are closed to the total energy
W is expected to become milder for the coupled
channel potentials including these states.

4. Extension: Inelastic scattering
with particle production

The method considered in the previous section
can be generalized to inelastic scattering where a
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number of particles is not conserved. For illustration,
we consider a case that the scatterings A + B —
A+ Band A+ B— A+ B+ Coccur and the total
energy W satisfies my+ mp+ me< W< my+
mp+ 2me.

We consider the following NBS wave functions
in the center of mass system:

1 .
Php(m) = \/ﬁgg(@\m(r +x,6)pp(r,0)|W)
[4.1]
Z/)%E%C(w’ y)
1 . Yupc
- lim{0 )
\/ZAZBZC éir(r)%r< |QOA<7'+$+ meg )
x pp(r+y,0)pc(r, —6)|W), [4.2]
where
|W> = C1|k>in ® ‘_k>in + 02|qz>in
HBC uBc
®|q, — q, i> ®‘—qy - qxi> [4.3]
mc /i mp /i

with
W =VE +m? + VK +m

2
MUpBC
—Vq%miﬂ/(qy—qz—mC) +mi

2
HBC 9
+\/(Qy+‘h mB) +mC

and 1/upc=1/mp+ 1/m¢c Here y=rg— 1 is a
relative coordinate between B and C with the
reduced mass ppe, while x=1r4 — Rpe is the one
between A and the center of mass of B and C with
Rpe= (mprg+ mere)/(mp + me). We here assume
the property that waBC has asymptotic behavior of
the scattering wave of A + B+ Cas |z|,|y| — oo, as
shown for ¢!} in the previous section. Although this
property has not been shown so far, it is reasonable to
assume this. We leave the proof for this important
property to the future investigation.

We define the non-local potential from the
coupled channel equations as

Kip(@)
= [B" = HyTp(w)

- /d3z Uap,ap(x; 2)1 5(2)

[4.4]

+/d32d3w Uap,apc(; z, )P 5o (2, w)
[4.5]
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w

KABc(wa Y)
_ 1ABC C A,BC C1 W
:[qu’B +E£ - H, _HOBiy} hse(T, y)

= /d3z Unpc,ap(@, y; 2) x P4 5(2)

+/d3zd3w Usgcapc(Z, y; 2, w) Pl o (2, w)

where
2
AB _ -Vi A,BC _ -Vi BC _ —Vy
02 = g’ 0T 2uapc’ " 2upc’
[4.6]
92 2
pAB _ pABe __ L Bo_ Yy
k 2uap’ 2uape’ W 2upe
[4.7]

with another reduced mass defined by 1/p4pc=
1/mA + 1/(771134’ mc).
We consider the following velocity expansions

Uap,ap(®; z)

= [Vapap(z) + O(V,)]6*(x — z) [4.8]
Uap.apc(x; 2, w)

= [Vap.apc(z, w) + O(V,)])8* (x — z) [4.9]
Uapc,aB(Z, ¥; 2)

= Vapc.as(z, y) + O(V,)]8 (z — 2) [4.10]
Uapc,apc(®, y; 2z, w)

= [Vapc.apc(z,y) + O(V,, V)]

x 8% (x — 2)8%(y — w), [4.11]

where the hermiticity of the non-local potentials gives

Vap.apc(x,y) = Vapc,ap(®, y).
At the leading order of the velocity expansions,
the coupled channel equations become

Kip(x) = Vapap(@)P ()
+ [ @w Vanasole, 0)l @ w) 112

Kapc(z,y) = Vagc ap(z, y)' ()
+ Vape ape(z, yWZVBC(% y). [4.13]

By considering two values of energy such that
W= W;, Ws, we can determine Vypcap and Vapcasc
from the second equation as

(Vasc,ap(z,y)  Vascapo(z,y))

= (Khc(@y) Klipo(z.y))

) ( ONRTAC) )
Wi Wo
anc(®,Y) Yupe(T,y)

Using the hermiticity Vap apc(z, y) = Vapc.ap(z, y),
we can extract Vypap from the first equation as

[4.14)
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1
C
— /d3w Vape.as(€, w)yl o (@, w)

[4.15)

for W= Wy, Wa. A difference of Vyp 4p5(x) between
two estimates at W; and W, gives an estimate for
higher order contributions in the velocity expansions.

Once we obtain Vapap, Vapapc= Vapcap
and Vypcap we can solve the coupled channel
Schrédinger equations in the infinite volume, in order
to extract physical observables. As W increases and
becomes larger than my + mp+ nme, the inelastic
scattering A+ B— A + B+ nC becomes possible.
As in the case of A+ B— A + B+ Cin the above,
we can define the coupled channel potentials includ-
ing this channel, though calculations of the NBS
wave functions for multi-hadron operators become
more and more difficult in practice.

Vap.ap(x) {K Ws(m)

5. Summary

In this paper, we propose extensions of the
method of extracting potentials through NBS wave
functions to the case where inelastic scatterings
becomes important. We first consider the case that
A+ B— C+ D scattering occurs and present an
explicit formula to extract the coupled channel
potentials between AB and CD. The general formula
for the scattering among n states is also given. An
extension to the case where the particle production
occurs during the scattering such as A+ B—
A+ B+ C is also considered. This can also be
extended to more general cases such as A+ B—
A+ B+nC(n=1,23,....).

Recently the potential method has been used to
extract potentials for the flavor SU(3) limit in lattice
QCD where up, down and strange quark masses are
all equal.?) In this limit there exist 6-independent
potentials corresponding to the irreducible represen-
tations of the flavor SU(3), and among these, the
flavor singlet potential is strong attractive, suggest-
ing an existence of a bound state in this channel. This
expectation has been confirmed by more detailed
study in lattice QCD and a bound state of two up
quarks, two down quarks and two strange quarks,
called the H dibaryon, indeed exists in the flavor
SU(3) limit.?Y To study the property of the H
dibaryon in the real world where the strange quark is
much heavier than up and down quarks so that the
flavor SU(3) symmetry is broken, the extension
presented in this paper for the coupled channels is

[Vol. 87,

indeed necessary: The SU(3) breaking in nature
appears in the octet baryon mass as my = 939 MeV,

my = 1116 MeV, my, = 1193 MeV  and mz =
1318 MeV. Therefore thresholds of two baryon
systems with strangeness S= —2 and ispspin =0,
to which the H dibaryon belongs, are given by
Waa = 2232 MeV < Wy= = 2257 MeV
< Wyy = 2386 MeV. [5.1]

A study for coupled channel potentials in this case
has started using the 2+1 flavor lattice QCD and a
preliminary result has already been presented.??
More details results for this study will be published
soon.
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