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Abstract: A new spectroscopic method of triple resonance is proposed for studying chirality
of a molecule of C1 symmetry. Each enantiomer of such a molecule is of mixed parity and thus
exhibits all three a-, b-, and c-types of rotational spectra. The present study concludes, by using
time-dependent perturbation theory, that the transition probability between two of the three
rotational levels under triple resonance differs for different enantiomer. This result can thus be of
some significance for enantiomer differentiation.
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I. Introduction

Chirality is a fascinating phenomenon; its
influence prevails in a number of fields, as described
in many books and articles.1) At an early stage of
quantum mechanics, Hund already noticed a serious
paradox for this new theory, namely the optical
activity would vanish in quantum mechanics for any
molecule in a stationary state.2),3) In order to solve
this problem, he thought of a tiny perturbation term
between enantiomers, which could mix the left-
handed and right-handed molecules by the tunneling
motion through a potential barrier caused by the
perturbation, but the rate of the motion would be so
slow that the optical activity would be preserved
practically forever. In 1957 a new finding of parity
violation was reported.4),5) This result means that the
R- and S-enantiomers are not degenerate in energy.
Both Hund’s perturbation and parity violation terms
are quite small for almost all the “stable” chiral
molecules, in other words, the Hamiltonian of a chiral
molecule is almost completely symmetric with respect
to inversion, and the measurement of optical rotation
has so far been nearly the only way to differentiate
enantiomers. Even highly sophisticated spectroscopic
methods such as the one with highly stabilized
carbon dioxide lasers as sources6) have achieved the
resolution to "8/8 F 10!13, which is still at least

three orders of magnitude larger than theoretical
estimates for the contribution of parity violation.7)–9)

In view of the importance of enantiomer differ-
entiation, quite a large variety of spectroscopic
methods have been proposed, but most of them have
proven far from successful. It might be appropriate
here to cite several attempts for enantiomer differ-
entiation using molecular complexes combined with
high-resolution spectroscopic methods. Le Barbu-
Debus, Zehnacker-Rentien and their collaborators10)

employed UV and UV/IR double-resonance spec-
troscopy to record electronic and vibrational spectra
of chiral complexes generated by supersonic expan-
sion. Howard and his collaborators,11),12) Xu and her
associates,13)–15) and Caminati’s group16) have ap-
plied Fourier-transform microwave spectroscopy to
molecular complexes consisting of chiral-achiral and
chiral-chiral molecules.

In these circumstances I decided to examine
closely chiral molecules of C1 symmetry, namely
molecules without any symmetry operation, in order
to trace the real origin of molecular chirality and to
detect its consequences on spectra of chiral molecules.
The other group of chiral molecules belong to C2

group, which consists of a C2 operation, but I shall
treat this group of molecules separately, because they
give only one type of rotational transitions, due to
the permanent dipole moment being aligned to the
C2 axis. On the other hand, as has been well known,
C1 chiral molecules exhibit all three a-, b-, and c-
type rotational transitions. This is certainly very
surprising, but not many people have appreciated the
significance of this important fact. It has been well

*1 The Graduate University for Advanced Studies, Hayama,
Kanagawa, Japan.

† Correspondence should be addressed: E. Hirota, The
Graduate University for Advanced Studies, Hayama, Kanagawa
240-0193, Japan (e-mail: ehirota@triton.ocn.ne.jp).

Proc. Jpn. Acad., Ser. B 88 (2012) [Vol. 88,120

doi: 10.2183/pjab.88.120
©2012 The Japan Academy

http://dx.doi.org/10.2183/pjab.88.120


established that any electric-dipole transitions take
place between two levels of opposite parity, because
the dipole moment is of odd parity, and certainly
this rule should also apply to any pure rotational
transitions of molecules. We have, however, many
examples of C1 chiral molecules in the literatures, for
which all a-, b-, and c-types of rotational transitions
were observed and reported. Thus the observations
on these chiral molecules remained a puzzle for us for
a long time. We may wonder how we can understand
the rotational spectra of C1 chiral molecules. This
is the start of the present research; I suspected that
this puzzle was closely related to Hund’s paradox.
I keep in mind mainly pure rotational spectroscopy
of molecules such as microwave spectroscopy as an
experimental tool of the present study, because it is
straightforward and yet amenable to various types of
spectroscopic experiments such as double resonance
quite easily. Of course, laser spectroscopy is very
similar to it in many respects, and the present
treatment may readily be extended to other wave-
length regions, infrared, visible, and ultraviolet, and
may thus be applicable to C2 chiral molecules as well,
for which two of the three types of transitions can be
vibrational, for example.

As already stressed, one of the most crucial
points of the present study lies in the characteristic
feature of C1 chiral molecules that all the three a-,
b-, and c-types of rotational transitions take place
simultaneously. Of course, they can be observed
routinely one by one by using a conventional
spectroscopic method, but such observations, even
with highest resolution available at the present, have
not provided us with any new information on
molecular chirality. Obviously a fundamentally new
approach is required to clarify the real essence of
molecular chirality, and I have decided to focus the
attention to the dynamical behavior of a three-level
system of a C1 chiral molecule by introducing a triple-
resonance method, combined with time-dependent
perturbation theory.

II. Time-dependent perturbation theory

We follow the formulation described by Landau
and Lifshitz in their textbook,17) and reproduce some
essential part of the theory for the sake of conven-
ience. The Hamiltonian of a three-level system is
expressed as

H ¼ H0 þ V ðtÞ: ½1�
The eigenfuction of the unperturbed time-independ-
ent Hamiltonian H0 in a stationary state k is given

by *k
(0) with the eigenvalue Ek

(0); *k
(0) F

Ak
(0) exp(!iEk

(0)t/h�). When a time-dependent pertur-
bation V(t) is added, the solution of the Schrödinger
equation:

ih�@�=@t ¼ ðH0 þ V ðtÞÞ� ½2�
may be expressed by a sum of *k

(0) over k: * F

∑kak(t)*k
(0). Inserting * in Eq. [2] leads to the

following equation for the coefficient ak(t):

ih�dam=dt ¼
P

k VmkðtÞakðtÞ; ½3�
where

VmkðtÞ ¼
Z

�m
ð0Þ�V �k

ð0Þdq

¼ Vmk expfði=h�Þ½Em
ð0Þ � Ek

ð0Þ�tg
¼ Vmk expði!mktÞ: ½4�

We assume the perturbation periodic with the
frequency B, i.e. of the form:

V ðtÞ ¼ F expð�i!tÞ þG expði!tÞ: ½5�
Because V(t) is a Hermitian operator,

Gnm ¼ Fmn
� ½6�

holds, and Eq. [4] is given by

VknðtÞ ¼ Fkn exp½ið!kn � !Þt�
þ Fnk

� exp½ið!kn þ !Þt�: [4a]

III. Application to two- and three-level systems

First we review the result on a two-level system
worked out by Landau and Lifshitz,17) which will
allow us to make an important comparison with the
results on a three-level system given below.

(1) Two-level system. The frequency of the
external perturbation B is assumed to be very close to
Bmn: Em

(0) ! En
(0) F (B D C), where C represents a

small frequency shift. Retaining only terms depend-
ing on the low frequency Bmn ! B results in

ih�dam=dt ¼ Fmn expði"tÞan; [7a]

ih�dan=dt ¼ Fmn
� expð�i"tÞam: [7b]

Because these equations involve the second time
derivative of am, they yield two independent solutions
for the coefficients, which are given by

an ¼ A expði�1tÞ;
am ¼ �Aðh��1=Fmn

�Þ expði�2tÞ; [8a]

an ¼ B expð�i�2tÞ;
am ¼ Bðh��2=Fmn

�Þ expð�i�1tÞ; [8b]

where
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�1 ¼ �"=2þ�; �2 ¼ "=2þ�;

� ¼ ½ð"=2Þ2 þ ðjFmnj=h�Þ2�1=2 ½9�
and A and B are determined by the normalization
condition. The system at time t is, in general,
expressed by a linear combination of the two
solutions Eqs. [8].

Suppose that the system lies in the m-th state
*m

(0) at t F 0, then after t its wavefunction changes
to

� ¼ expði"tÞ½cosð�tÞ � ði"=2�Þ sinð�tÞ��m
ð0Þ

� expð�i"tÞðiFmn
�=h��Þ sinð�tÞ�n

ð0Þ: ½10�
The absolute square of the coefficient of *n

(0) in this
equation is the probability for the state being in the
n-th state after t, which is given by

Wn m ¼ ðjFmnj2=2h�2�2Þ½1� cosð2�tÞ�; ½11�
which, at the exact resonance C F 0, reduces to

Wn m ¼ ð1=2Þ½1� cosð2jFmnjt=h�Þ�: [11a]

This varies between 0 and 1 as the time passes with
the periodicity of �h�/|Fmn| and, when multiplied by
a damping factor exp(!t/=) to account for the effect
of intermolecular collision with the average collision
time interval =, gives a free induction decay signal
function.

(2) Three-level system. This treatment on the
two-level system has been extended in the present
study to a three-level system 1, 2, and 3, with the
level separations given in frequency unit by Ba F

2 ! 1, Bb F 3 ! 2, and Bc F 3 ! 1 (the suffixes a, b,
and c of the frequencies imply the types of rotational
transitions). Here without loss of generality, the
three levels are assumed to be arranged, as shown
in Fig. 1. The equations for the coefficients, which
correspond to Eqs. [7] in the case of the two-level
system, are

ih�da1=dt ¼ F21
� expð�i"atÞa2 þ F31

� expð�i"ctÞa3;
[12a]

ih�da2=dt ¼ F21 expði"atÞa1 þ F32
� expð�i"btÞa3;

[12b]

ih�da3=dt ¼ F31 expði"ctÞa1 þ F32 expði"btÞa2; [12c]
where

!21 ¼ !a þ "a; [13a]

!31 ¼ !c þ "c; [13b]

!32 ¼ !b þ "b: [13c]

In the following, for the sake of simplicity, the
exact resonance is assumed for the three transitions.
The coefficient a1 satisfies the following equation:

d3a1=dt
3 þ ½ðF21

�F21 þ F31
�F31 þ F32

�F32Þ=h�2�da1=dt
� i½ðF31

�F32F21 þ F21
�F32

�F31Þ=h�3�a1 ¼ 0:

½14�
We shall assume the following trial form for a1:

a1 ¼ A1 expði�tÞ ½15�
and insert it in Eq. [14]. Then we obtain a third-order
equation for 6 given by

�3 �D2
2�þD3

3 ¼ 0; ½16�
where

D2
2 ¼ ðjF12j2 þ jF13j2 þ jF23j2Þ=h�2; [16a]

D3
3 ¼ ½F13F32F21 þ ðF13F32F21Þ��=h�3: [16b]

The left-hand side of Eq. [16] is plotted in Fig. 2 as
a function of 6, where D2 is arbitrarily chosen to be
3.0 and D3 to take three values 2.0, 0.0, and !2.0.

The properties of Eq. [16] may be summarized as
follows:
(1) There are three roots for 6: 61, 62, and 63,

which are taken to satisfy the condition:

�1 � �2 � �3: ½17�
(2) The left-hand side of Eq. [16]: f(6) F

63 ! D2
26 D D3

3 reaches extremes at 6 F D6x

(minimum) and 6 F !6x (maximum) with 6x

denoting D2/√3. The values of f(6) at these
extremes are

fð��xÞ ¼ �ð2=3√3ÞD2
3 þD3

3: ½18�
(3)-1 If D3 > 0 and (2/3√3)D2

3 > D3
3, there are

three roots: 61 and 62 > 0, 63 < 0
and (2/3√3)D2

3 F D3
3, 61 F 62 F DD2/√3,

63 < 0
and (2/3√3)D2

3 < D3
3, only one root exists:

63 < 0.

3

c

b

a

1

2

Fig. 1. Three-level system.
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(3)-2 If D3 F 0, 61 F !63 F D2 > 0, 62 F 0.
(3)-3 If D3 < 0 and (2/3√3)D2

3 > |D3
3|, there are

three roots: 61 > 0, 62 and 63 < 0
and (2/3√3)D2

3 F |D3
3|, 61 > 0, 62 F 63 F

!D2/√3
and (2/3√3)D2

3 < |D3
3|, only the root is

61 > 0.
Equation [15] assumed for a1 is then inserted

in Eqs. [12b] and [12c] to derive the solutions for a2
and a3:

a1 ¼ A1 expði�1tÞ; [19a]

a2 ¼ A1½�1F21 � F23F31=h��=h�=½��1
2

þ jF23j2=h�2� expði�1tÞ; [19b]

a3 ¼ A1½�1F31 � F32F21=h��=h�=½��1
2

þ jF23j2=h�2� expði�1tÞ; [19c]

where 6 F 61 is chosen. The other roots: 62 and
63, if available, are inserted in Eqs. [19] in place
of 61 to derive the corresponding a1, a2, and a3,
respectively.

IV. Time-dependent behavior of the 2 A 1
transition under a triple-resonance condition

Suppose that the three-level system under
consideration lies in *1

(0) at t F 0. Using the results
Eqs. [19], the system at t is expressed as

�ðtÞ ¼ A1½�1
ð0ÞðtÞ þ C21�2

ð0ÞðtÞ
þ C31�3

ð0ÞðtÞ� expði�1tÞ
þ A2½�1

ð0ÞðtÞ þ C22�2
ð0ÞðtÞ

þ C32�3
ð0ÞðtÞ� expði�2tÞ

þ A3½�1
ð0ÞðtÞ þ C23�2

ð0ÞðtÞ
þ C33�3

ð0ÞðtÞ� expði�3tÞ; ½20�
where

C21 ¼ ½�1F21 � F32
�F31=h��=h�=½��1

2 þ F32
�F32=h�

2�;
[21a]

C22 ¼ ½�2F21 � F32
�F31=h��=h�=½��2

2 þ F32
�F32=h�

2�;
[21b]

C23 ¼ ½�3F21 � F32
�F31=h��=h�=½��3

2 þ F32
�F32=h�

2�;
[21c]

C31 ¼ ½�1F31 � F32F21=h��=h�=½��1
2 þ F32

�F32=h�
2�;
[21d]

C32 ¼ ½�2F31 � F32F21=h��=h�=½��2
2 þ F32

�F32=h�
2�;
[21e]

C33 ¼ ½�3F31 � F32F21=h��=h�=½��3
2 þ F32

�F32=h�
2�:
[21f]

The initial conditions at t F 0, which we assumed,
correspond to

A1 þ A2 þ A3 ¼ 1; [22a]

A1C21 þ A2C22 þ A3C23 ¼ 0; [22b]

A1C31 þ A2C32 þ A3C33 ¼ 0: [22c]

Equations [22] are solved for Ai as follows:
A1 ¼ ‘1ð�2 � �3Þ=�; [23a]

A2 ¼ ‘2ð�3 � �1Þ=�; [23b]

A3 ¼ ‘3ð�1 � �2Þ=�; [23c]
where

� ¼ �1�2ð��1 þ �2Þ þ �2�3ð��2 þ �3Þ
þ �3�1ð��3 þ �1Þ; ½24�

‘1 ¼ ��1
2 þ �0

2; [25a]

‘2 ¼ ��2
2 þ �0

2; [25b]

‘3 ¼ ��3
2 þ �0

2; [25c]

�0
2 ¼ F32

�F32=h�
2: ½26�

−90.0

−60.0

−30.0

0.0

30.0

60.0

90.0

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0 5.0

Fig. 2. The left-hand side of Eq. [16] is plotted as a function of
6, assuming D2 F 3.0 and D3 F 2.0 (––––), 0.0 (- - - - -), and
!2.0 (– -– -).
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The probability of the state being in the state 2 at t
is given by the absolute square of the coefficient of
*2

(0)(t) in Eq. [20], i.e.

W2�1 ¼ jA1C21 expði�1tÞ þ A2C22 expði�2tÞ
þ A3C23 expði�3tÞj2; ½27�

which, when Eqs. [21a], [21b], and [21c] are inserted,
reduces to
W2�1 ¼ ð1=�2Þjð�2 � �3ÞðP1 þ iQ1Þ expði�1tÞ

þ ð�3 � �1ÞðP2 þ iQ2Þ expði�2tÞ
þ ð�1 � �2ÞðP3 þ iQ3Þ expði�3tÞj2; [28a]

with the new definitions:

Pi þ iQi ¼ ½�iF21 � F32
�F31=h��=h�ði ¼ 1; 2; 3Þ: [28b]

We thus finally obtain

W2�1

¼ ð1=�2Þfð�2� �3Þ2ðP1
2þQ1

2Þ
þ ð�3� �1Þ2ðP2

2þQ2
2Þ þ ð�1� �2Þ2ðP3

2þQ3
2Þ

þ 2ð�2� �3Þð�3� �1Þ½ðP1P2 þQ1Q2Þ cosð�1� �2Þt
þ ðP1Q2�P2Q1Þ sinð�1� �2Þt�
þ 2ð�3 � �1Þð�1� �2Þ½ðP2P3 þQ2Q3Þ cosð�2� �3Þt
þ ðP2Q3 � P3Q2Þ sinð�2 � �3Þt�
þ 2ð�1� �2Þð�2� �3Þ½ðP3P1 þQ3Q1Þ cosð�3� �1Þt
þ ðP3Q1�P1Q3Þ sinð�3� �1Þt�g: ½29�

V. Implications for enantio-differentiation

We shall focus attention to the rotational
motion of a chiral molecule. The perturbation
Eq. [4] is then ascribed to the interaction of the
molecule with the external microwave electric field
through the dipole moment of the molecule, namely
due to the Stark effect. Because the dipole moment is
a vector, it is reversed in sign when one enantiomer
is transformed to the other, which means that all
the matrix elements Fij change sign. As shown in
a previous section III, because D3 as defined by
Eq. [16b] changes its sign, the three characteristic
frequencies 61, 62, and 63 will be transformed
accordingly as follows:

�1 ! ��3; [30a]

�2 ! ��2; [30b]

�3 ! ��1; [30c]
and Pi D iQi, as defined by Eq. [28b], varies as
follows:

P1 þ iQ1 ! P3 þ iQ3; [31a]

P2 þ iQ2 ! P2 þ iQ2; [31b]

P3 þ iQ3 ! P1 þ iQ1; [31c]

and hence
P1

2 þQ1
2 ! P3

2 þQ3
2; [31d]

P2
2 þQ2

2 ! P2
2 þQ2

2; [31e]

P3
2 þQ3

2 ! P1
2 þQ1

2; [31f]

P1P2 þQ1Q2 ! P2P3 þQ2Q3; [31g]

ðP1Q2 � P2Q1Þ ! �ðP2Q3 � P3Q2Þ; [31h]

P2P3 þQ2Q3 ! P1P2 þQ1Q2; [31i]

ðP2Q3 � P3Q2Þ ! �ðP1Q2 � P2Q1Þ; [31j]

P3P1 þQ3Q1 ! P1P3 þQ1Q3; [31k]

ðP3Q1 � P1Q3Þ ! �ðP3Q1 � P1Q3Þ; [31l]
while the frequencies and their trigonometric func-
tions in Eq. [29] are changed as follows:

ð�2 � �3Þ2 ! ð�1 � �2Þ2; [32a]

ð�3 � �1Þ2 ! ð�3 � �1Þ2; [32b]

ð�1 � �2Þ2 ! ð�2 � �3Þ2; [32c]

ð�2 � �3Þð�3 � �1Þ ! ð�3 � �1Þð�1 � �2Þ; [32d]

ð�3 � �1Þð�1 � �2Þ ! ð�2 � �3Þð�3 � �1Þ; [32e]

ð�1 � �2Þð�2 � �3Þ ! ð�1 � �2Þð�2 � �3Þ; [32f]

cosð�1 � �2Þt! cosð�2 � �3Þt; [33a]

sinð�1 � �2Þt! sinð�2 � �3Þt; [33b]

cosð�2 � �3Þt! cosð�1 � �2Þt; [33c]

sinð�2 � �3Þt! sinð�1 � �2Þt; [33d]

cosð�3 � �1Þt! cosð�3 � �1Þt; [33e]

sinð�3 � �1Þt! sinð�3 � �1Þt: [33f]

As a result, the three sine terms in Eq. [29] will
change their signs from one enantiomer to the other.
Therefore, we may conclude that we might have a
chance to differentiate two enantiomers through the
observation of their time-dependent rotational spec-
tra under a triple resonance condition.

VI. Discussion and conclusion

VI-1. The D3 constant. One of the most
important results of the present study lies in the
discovery of the D3 constant, which, as defined by
Eq. [16b], consists of products of three Stark matrix
elements, each corresponding to a different-type
transition between two of the three levels of the
system, as illustrated in Fig. 1. This constant may
thus be regarded to bear an essential feature of
molecular chirality.
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It should be pointed out that this constant is not
compatible with conventional theory of molecular
rotation (i.e. the rotation of a rigid body). The Stark
effect for the molecular rotation is expressed by
products of the components of the permanent dipole
moment and the direction cosines between the dipole
moment components and the space-fixed axis along
which the external electric field is applied. For the
pure rotation, the dipole moment is a constant, and
the matrix elements of the three direction cosines are
normally chosen such that two of them real and one
imaginary. Therefore, the rotation theory concludes
D3 to be zero. We may generalize this treatment such
that the three Stark matrices result in a real D3, to be
consistent with its definition, namely by choosing the
Stark matrices to be either (i) all real or (ii) one real
and two imaginary. Then we would arrive at an
insignificant conclusion that Pi and Qi defined by
Eq. [28b] satisfy either Pi º 0 and Qi F 0 or Pi F 0
and Qi º 0, making all the sine terms in Eq. [29]
vanish. The present study indicates that the rota-
tional levels of a C1 chiral molecule do not belong to
any definite parity, rather to a mixed parity, and
hence they do not follow the theory of molecular
rotation.

In deriving Eq. [29], we implicitly assumed that
there are three solutions of 6. This assumption, which
is indispensable for chirality, looks plausible, namely
the condition D3 > 0 and (2/3√3)D2

3 > D3
3 or D3 < 0

and (2/3√3)D2
3 > |D3

3| hold in most cases.
VI-2. The mixed parity. Next we need clarify

the meaning of parity mixing for the rotational
levels of a C1 chiral molecule. As mentioned in the
Introduction, there are two terms known at the
present time that give rise to molecular chirality or to
parity mixing of rotational levels: Hund’s perturba-
tion and parity violation. Here I shall derive a formal
expression for the mixed parity, although the two
terms originate from backgrounds quite different
in physical nature (see Ref. 3, pp. 207–213 for the
physical basis of the parity violation). We designate
the two terms (in the energy unit) by EF and EPV,
respectively, and write down the wavefunctions for
the enantiomers: jRi and jSi in terms of the two basis
sets of definite parity: jþi and j�i as follows:

jRi ¼ cos’jþi þ sin’j�i; [34a]

jSi ¼ sin’jþi � cos’j�i; [34b]
where

cos’ ¼ fðET þ EPVÞ=ð2ETÞg1=2; [35a]

sin’ ¼ fðET � EPVÞ=ð2ETÞg1=2; [35b]

ET ¼ ½EPV
2 þ EF

2�1=2: ½36�
If we assume EPV susceptible to the inversion
operation P as follows:

PEPV ¼ �EPV; ½37�
we have

P cos’ ¼ sin’; [38a]

P sin’ ¼ cos’; [38b]

Pj�i ¼ �j�i; [38c]
and arrive at

PjRi ¼ sin’jþi � cos’j�i ¼ jSi; [39a]

PjSi ¼ cos’jþi þ sin’j�i ¼ jRi; [39b]

as we expected. Note that the assignment of jRi and
jSi is immaterial here, in other words, they may be
interchanged.

IV-3. The parity mixing of rotational levels
of a chiral molecule. The parity mixing expressed
by Eqs. [34] is of great significance for enantiomer
differentiation as represented by the sine terms in
Eq. [29]. In order to make clear this point further, we
examine the parity of pure rotational states in some
detail.

In order to include the rotational motion in the
discussion of chirality, we rewrite the inversion
operation as follows:

P ¼ <g0g00C2
g; ½40�

where g, gB, and gBB denote the three different
principal inertial axes, a, b, and c. The first factor
<gBgBB of Eq. [40] denotes the reflection on the gBgBB
plane and the second one the two-fold rotation about
the g axis. We designate a rovibronic state as jþ; ri or
j�; ri, where the vibronic part is of definite parity
either D or !, as shown above, and r denotes the
rotational part, which is one of the four group
members for an asymmetric rotor: KaKc F ee, eo, oo,
and oe.18) The transition probability for the r1–r2
transition is the absolute square of the matrix
element of the dipole moment component along the
space-fixed Z axis 7Z.

Let us consider two simple examples of chiral
molecules, in order to illustrate the role of the
rotational motion. The first example is the isopropa-
nol molecule: (CH3)2CHOH, which has been con-
firmed to exist in two rotational isomers, trans and
gauche, with respect to the dihedral angle between
the C–O–H and the H–C–O planes.19)–23) There are
two equivalent gauche forms, which may be regarded
as a chiral pair, while we simply ignore trans, because
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it is well isolated from gauche. Hirota24) and Hirota
and Kawashima25) found that the rotational spectra
observed for gauche were well reproduced by assum-
ing the a inertial axis antisymmetric, whereas the b
and c axes symmetric, and established that the two
gauche forms were split into a symmetric (D) and
an antisymmetric (!) state with the energy separa-
tion of 46798.901(60) and 4431.4613(17) MHz,
respectively, for (CH3)2CHOH and (CH3)2CHOD.
Although the gauche forms of isopropanol are by no
means optically stable in a conventional sense, as
indicated by the large energy separations, they are of
great use in discussing the role of rotational motion
in chirality.

We may thus interpret the matrix elements of
the dipole moment Z component of the gauche chiral
pair of isopropanol using Eq. [40] as follows:

h�; r1j�Z j�; r2i ¼ �bhr1j	bZ jr20i
þ �chr1j	cZ jr200i; [41a]

h�; r1j�Z j�; r2i ¼ �ahr1j	aZ jr2000i; [41b]
where the (r1, r2) pair in the hr1j	bZ jr2 0 i block, the
matrix element of the direction cosine )bZ, is either
(ee, oo) or (eo, oe), that in the hr1j	cZ jr2 00 i block is
either (ee, oe) or (oo, eo), and that in the hr1j	aZ jr2 000 i
block is either (ee, eo) or (oo, oe). Eqs. [41] exactly
provide a basis for the theoretical framework, which
Hirota employed to analyze the rotational spectra of
gauche isopropanol.

We then derive the matrix element of the
dipole moment in the enantiomer basis, provided
that the enantiomer is optically stable, i.e. localized
in a limited area of phase space, by employing
Eqs. [34]:

hR; r1j�Z jR; r2i ¼ �bhr1j	bZ jr20i þ �chr1j	cZ jr200i
þ ðEF=ETÞ�ahr1j	aZ jr2000i; [42a]

hS; r1j�Z jS; r2i ¼ �bhr1j	bZ jr20i þ �chr1j	cZ jr200i
� ðEF=ETÞ�ahr1j	aZ jr2000i; [42b]

hR; r1j�Z jS; r2i ¼ ðEPV=ETÞ�ahr1j	aZ jr2000i: [42c]

Although the relative magnitudes of EF and EPV are
different for different molecules, we may estimate EF/
ET to be of the order of one, in view of the fact that
the parity violation term is as small as 10!13 cm!1.
We may thus conclude that the rotational spectra of
an enantiomer consist of all three a-, b-, and c-types
transitions, with one component, a-type in the
present example, opposite in sign for the two
enantiomers, in agreement with what we found for
D3 and others. It is interesting to note that, when the
parity violation is sizable compared with the Hund

term, we may observe transitions between the two
different enantiomers, as Eq. [42c] indicates.

The second example of the chiral molecule is
propylene oxide, CH3CH(O)CH2. An optically pure
sample of this molecule is available commercially,
which means that the enantiomer of this molecule
is optically stable, and in fact, all three types of
rotational spectra were observed and analyzed in a
conventional way; one trivial example of three
transitions, which form a loop similar to that
depicted in Fig. 1, is the c-type 111–101, the a-type
212–111, and the b-type 212–101 transitions.26)–28) The
antisymmetric inertial axis of this molecule is the c
axis, and thus all the results derived for isopropanol
hold for propylene oxide as well, provided that the c
axis plays the role in place of the a axis.

IV-4. Comments on enantio-differentiation
experiments. It should be noted that the
observation of time-dependent microwave spectra
based upon Eq. [29], if successful, tells us only the
difference between the enantiomers; the assignment of
the observed spectra to either R- or S-enantiomers
individually needs additional information. It should
also be noted that the level scheme depicted in Fig. 1
and the enantiomer-dependent signal might be
correlated with each other.

The prediction of enantio-differentiation based
upon Eq. [29] looks reasonable and an experiment
based on this prediction is certainly worth being
carried out. It requires three microwave radiations of
different frequencies, and care must be taken to esti-
mate an optimum power for these radiations. In recent
years we employ molecular beams in a routine way,
which eliminate the burden of pressure broadening to
a considerable extent. Furthermore, the advances in
electronics allow us to use microwave sources with a
wide variety of power and frequency, and thus no
serious limitations exist in this respect in conducting
triple resonance experiments. There are two factors
to which we should pay attention: the off-resonance
terms Ca, Cb, and Cc in Eqs. [13] and the relative phases
of the three radiations. The former is deliberately
ignored in the present study primarily to simplify the
theoretical development, but would play significant
roles when we are interested in the line shape of the
triple resonance signals, as are the case for double
resonance,29) where the intermolecular collisions will
compete with the effects of multiple resonances. The
phases of the three external radiations might affect
triple resonance conditions to a considerable extent,
but can be exploited to extract some further useful
information from the triple resonance signals.
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IV-5. The nature of “tunneling” in Hund’s
paradox. The mechanism leading to the tunneling
in Hund’s paradox has not all been clarified in detail.
The chiral molecule is normally “defined” in such a
way that one must break at least one chemical bond
of this chiral molecule to transform one enantiomer
to the other, and thus the transformation and/or
the racemization will resemble a sort of chemical
reaction, although the reaction paths have not been
identified clearly for most chiral molecules. The
gauche forms of isopropanol briefly discussed in
IV-2 are not considered as chiral molecules in light
of this conventional definition of molecular chirality.
However, as I demonstrate, the gauche forms cer-
tainly behave like chiral molecules, but the tunneling
splitting is quite large and thus enantiomers are
almost impossible to isolate one from the other. The
tunneling motions in these cases are thought to
approximate some known internal motions. In the
example of isopropanol, the internal rotation about
the CH–OH axis has been suspected to be the main
“reaction” coordinate. However, it should be pointed
out that the energy differences between the two
gauche forms determined for the OH and OD species
of isopropanol do not satisfy the relation expected
from a simple internal-rotation model,25) indicating
close examination of the “reaction coordinate” indis-
pensable to clarify the real mechanism of tunneling
in this molecule.

Presumably because the tunneling in Hund’s
paradox remains ambiguous in nature, several inves-
tigations have recently been carried out, and here I
cite a study of Trost and Hornberger30) as such an
example. They treated a specific molecule D2S2 by
assuming the dominant collisional decoherence mech-
anism to stabilize the configuration states, i.e. the
enantiomer states, of the molecule. They stated
that the chirally sensitive parts of the London
dispersion interaction in their treatment consist of
(ED-EQ)(ED-ED) van der Waals interaction, where
ED denotes the electric dipole and EQ the electric
quadrupole transitions, and that the associated
dispersion term is proportional to r!7, rather than
of the ordinary r!6 dependence on the distance r
between the interacting atoms and/or molecules.

The mechanism proposed by Trost and
Hornberger can play an important role in the
tunneling problem. It should be pointed out, how-
ever, that most asymmetric chemical syntheses so far
employed are based on chiral catalyzers, and we
certainly have to carry out much more extensive
researches in order to clarify how significant the

collisional decoherence is in enormous number of
chiral catalytic materials.
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