Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Feature: Evolution of Dielectric Materials II: Papers
Effect of excess Pb on epitaxial growth of Pb(Mg1/3Nb2/3)O3 thin films prepared by chemical solution deposition process
Takanori KIGUCHITomohito TSUKAMOTOCangyu FANMasahiko NISHIJIMAToyohiko J. KONNO
Author information
JOURNAL FREE ACCESS

2013 Volume 121 Issue 1416 Pages 638-643

Details
Abstract

This study investigated the effect of excess PbO and post-annealing on the crystallinity and the microstructure of Pb(Mg1/3Nb2/3)O3 (PMN) epitaxial thin films. PMN thin films were deposited on SrTiO3 (STO) (001) substrates using a chemical solution deposition (CSD) process with rapid thermal annealing (RTA) of spin-coated metallo-organic decomposition (MOD) solutions. The nominal film composition was Pbx(Mg1/3Nb2/3)O3 (x = 1.0 or 1.1). All films showed the (001)PMN//(001)STO, [001]PMN//[001]STO epitaxial relationship and were single phase perovskite PMN without any pyrochlore phases. The Pb1.1(Mg1/3Nb2/3)O3/SrTiO3 thin film post-annealed at 973 K with facing treatment showed the highest crystallinity of 0.8° in full width at half maximum (FWHM) of the 002PMN rocking curve. Transmission electron microscopy (TEM) revealed PbO nanoparticles on the surface of the PMN thin films. The film composition was almost stoichiometric. On the other hand, the Pb1.1(Mg1/3Nb2/3)O3/SrTiO3 thin film post-annealed at 973 K without facing treatment showed crystallinity of 1.0° and no PbO nanoparticles. The film composition was almost stoichiometric. These results indicate that the excess PbO is not incorporated into the PMN films. Instead, it volatizes from the film surface, which improves the crystallinity and inhibits the PMN decomposition.

Content from these authors
© 2013 The Ceramic Society of Japan
Previous article Next article
feedback
Top