Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Feature: Functional Ceramics for Energy Conversion and Storage Devices: Full papers
Crystal structure, thermal expansion and electrical conduction behavior of PrNi1−xFexO3−δ at high temperature
Kazuhiro KURATAYuichiro TOYOTATsubasa SATOEiki NIWAKatusmi SHOZUGAWAMotoyuki MATSUOTakuya HASHIMOTO
Author information
JOURNAL FREE ACCESS

2017 Volume 125 Issue 4 Pages 227-235

Details
Abstract

In order to evaluate potential of PrNi1−xFexO3−δ as new cathode material for solid oxide fuel cells, single phase preparation, crystal structure at various temperatures, thermal expansion property and electrical conduction behavior at high temperature were investigated. Single phase of PrNi1−xFexO3−δ (0.3 ≤ x ≤ 1.0) with orthorhombic distorted perovskite structure was successfully prepared by Pechini method. No structural phase transition was observed between room temperature and 1000°C in air. Linear thermal expansion coefficient was evaluated to be around 1.16 × 10−5 K−1, showing fair agreement with that of yttria-stabilized zirconia and gadolinia-doped ceria which were frequently employed as electrolyte material. Electrical conductivity of PrNi1−xFexO3−δ increased with increasing Ni content; however, the conductivity did not exceed that of LaNi1−xFexO3−δ. From the comparison of activation energy of variable range hopping conduction and Mössbauer spectroscopy between PrNi1−xFexO3−δ and LaNi1−xFexO3−δ, it was suggested that hole carrier concentration of PrNi1−xFexO3−δ was lower than that of LaNi1−xFexO3−δ owing to variation of valence of Pr ion.

Content from these authors
© 2017 The Ceramic Society of Japan
Previous article Next article
feedback
Top